
SIGNAL AND SYSTEM ( BTECH 4TH SEM ) EE 
 

UNIT – 1 
 

Signal and system:- Signal is a function which contains some information or message. Example- x(t)=2y(t) 
 

And system is a interconnection of components or devices. 

Signal properties:- 

Periodicity:- A signal is a periodic signal if it completes a pattern within a measurable time frame, called 

a period and repeats that pattern over identical subsequent periods. The completion of a full pattern is 

called a cycle. A period is defined as the amount of time (expressed in seconds) required to complete 

one full cycle. The duration of a period represented by T, may be different for each signal but it is 

constant for any given periodic signal. 
 

The period is the smallest value of T satisfying g(t + T) = g(t) for all t. The period is defined so because 

if g(t + T) = g(t) for all t, it can be verified that g(t + T') = g(t) for all t where T' = 2T, 3T, 4T, ... In essence, 

it's the smallest amount of time it takes for the function to repeat itself. If the period of a function is 

finite, the function is called "periodic". Functions that never repeat themselves have an infinite period, 

and are known as "aperiodic functions". 
 

The period of a periodic waveform will be denoted with a capital T. The period is measured in seconds. 

Absolute integrability:- 

An absolutely integrable function is a function whose absolute value is integrable, meaning that the 

integral of the absolute value over the whole domain is finite. 
 

For a real-valued function, since 
 

Consider a measure space (X,A,μ)(X,A,μ). A measurable function f:X→[−∞,∞]f:X→[−∞,∞] is 

then called absolutely integrable if 

∫|f|dμ<∞. 

An absolutely integrable function is also commonly called a summable function. 
 

Remark If we assume only the measurability of |f||f|, then this does not guarantee the 

measurability of ff. Although a few authors require only the measurability of |f||f|, the vast 

majority of the literature assumes that ff itself is measurable. 

The following inequality, which is a particular case of Jensen's inequality, holds for any 
absolutely integrable function: 

https://en.wikipedia.org/wiki/Absolute_value
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https://www.encyclopediaofmath.org/index.php/Measure_space
https://www.encyclopediaofmath.org/index.php/Measurable_function
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∣∣∣∫fdμ∣∣∣≤∫|f|dμ 

(the assumption of absolute integrability is however not fundamental: the inequality makes 

sense and holds as soon as we can define 

∫fdμ, 

that is, as soon as the integral of the positive part of ff or that of the negative part of ff are finite). 

The space of absolutely integrable functions is a linear space which is usually denoted 

by L1(X,μ)L1(X,μ) and 

∥f∥1:=∫|f|dμ<∞ 

is a seminorm on it. It is customary to identify elements of L1(X,μ)L1(X,μ) whose values coincide except 

for a μμ-null set: after this identification the norme ∥⋅∥1‖⋅‖1 endowes L1(X,μ)L1(X,μ) with a Banach 

space structure. The L1L1 space is then just one case of a more general class of Banach spaces called Lp 

spaces. 
 

Determinism:- 
 

A signal is classified as deterministic if it’s a completely specified function of time. A good example of a 

deterministic signal is a signal composed of a single sinusoid, such as 
 

 

with the signal parameters being: 
 

A is the amplitude, f0  is the frequency (oscillation rate) in cycles per second (or 

hertz), and  

is the phase in radians. Depending on your background, you may be more 

familiar with radian frequency, 
 

which has units of radians/sample. In any case, x(t) is deterministic because the 

signal parameters are constants. 

Unit Step signal:- 

https://www.encyclopediaofmath.org/index.php/Banach_space
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Unit step function is denoted by u(t). It is defined as u(t) = {10t⩾0t<0 

It is used as best test signal. 
 

Area under unit step function is unity. 
 

Unit Impulse signal:- 

 

 

Impulse function is denoted by δ(t). and it is defined as δ(t) = {10t=0t≠0 

∫∞−∞δ(t)dt=u(t) 

δ(t)=du(t)dt 



Sinusoidal Signals:- 

 

Sinusoidal signal is in the form of x(t) = A cos(w0±ϕw0±ϕ) or A sin(w0±ϕw0±ϕ) 

 
Where T0  = 2π/w0 

 

Exponential Signals:- 
 

Exponential signal is in the form of x(t) = eαt 

The shape of exponential can be defined by αα 

Case i: if αα = 0 →→ x(t) = e0e0 = 1 

Case ii: if αα < 0 i.e. -ve then x(t) = e−αte−αt. The shape is called decaying exponential. 

 

Case iii: if αα > 0 i.e. +ve then x(t) = eαteαt. The shape is called raising exponential. 



 
 

Discrete time and Continous time signals:- 
 

 

Continuous-time signals are characterised by independent variables that are continuous and define a 

continuous set of values. Usually the variable indicates the continuous time signals, and the 

variable n indicates the discrete-time system. Also the independent variable is enclosed at parentheses for 

continuous-time signals and to the brackets for discrete-time systems. The feature of the discrete-time 

signals is that they are sampling continuous-time signals. 

Linearity:- 



Linearity is the behavior of a circuit, particularly an amplifier , in which the output signal strength varies 

in direct proportion to the input signal strength. In a linear device, the output-to-input signal amplitude 

ratio is always the same, no matter what the strength of the input signal (as long it is not too strong). 
 

In an amplifier that exhibits linearity, the output-versus-input signal amplitude graph appears as a 

straight line. Two examples are shown below. The gain, or amplification factor, determines the slope of 

the line. The steeper the slope, the greater the gain. The amplifier depicted by the red line has more 

gain than the one depicted by the blue line. Both amplifiers are linear within the input-signal strength 

range shown, because both lines in the graph are straight. 

 

 

In analog applications such as amplitude-modulation ( AM ) wireless transmission and hi-fi audio, 

linearity is important. Nonlinearity in these applications results in signal distortion, because the 

fluctuation in gain affects the shape of an analog output waveform with respect to the analog input 

waveform. 
 

Even if an amplifier exhibits linearity under normal conditions, it will become nonlinear if the input 

signal is too strong. This situation is called overdrive. The amplification curve bends towards a horizontal 

slope as the input-signal amplitude increases beyond the critical point, producing distortion in the 

output. An example is a hi-fi amplifier whose gain is set to the point where the VU (volume-unit) meter 

needles kick into the red range. The red zone indicates that the amplifier is not operating in a linear 

fashion. This can degrade the fidelity of the sound. 
 

Shift invariance:- 

https://whatis.techtarget.com/definition/amplifier
https://searchnetworking.techtarget.com/definition/signal
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A linear differential equation with constant coefficients displays time invariance. If we use the same 

input and starting conditions for a system now or at some later time then the result relative to the initial 

starting time will be identical. Another way of expressing this is that if the input is time shifted then so is 

the output. 
 

Differential equations and difference equations 

Mary Attenborough, in Mathematics for Electrical Engineering and Computing, 2003 
Time invariance 

A linear differential equation with constant coefficients displays time invariance. If we use the same 

input and starting conditions for a system now or at some later time then the result relative to the initial 

starting time will be identical. Another way of expressing this is that if the input is time shifted then so is 

the output. This idea is represented in Figure 14.5. 

 
 
 
 

 
Sign in to download full-size image 

Figure 14.5. If a system is time invariant, then a time-shifted input yields a time-shifted output. 
Example 14.4 

For the differential equation 

d2y/dt2+4y=sin(3t) 

show that 

y=sin(2t)−15sin(3t) 
 

is a solution and find a solution for the equation with the same input function delayed by 1 s, that is, find 

a solution to 

d2y/dt2+4y=sin(3(t−1)) 
 

Solution First, we check that 
y=sin(2t)−15sin(3t) 

 

is a solution to the differential equation. 

To do this, we must find the first and second derivatives 

dy/dt=2cos(2t)−(3/5)cos(3t)d2y/dt2=−4sin(2t)+(9/5)sin(3t) 
 

Substitute into 

d2y/dt2+4y=sin(3t) 

giving 

−4sin(2t)+(9/5)sin(3t)+4(sin(2t)−15sin(3t))=sin(3t)     ⇔   sin(3t)=sin(3t) 

https://www.sciencedirect.com/topics/mathematics/linear-differential-equation
https://www.sciencedirect.com/topics/mathematics/constant-coefficient
https://www.sciencedirect.com/science/article/pii/B9780750658553500401
https://www.sciencedirect.com/book/9780750658553
https://www.sciencedirect.com/topics/mathematics/linear-differential-equation
https://www.sciencedirect.com/topics/mathematics/constant-coefficient
https://www.sciencedirect.com/user/login?returnURL=https%3A%2F%2Fwww.sciencedirect.com%2Ftopics%2Fmathematics%2Ftime-invariance


which is true for all t. Hence, 
y=sin(2t)−15sin(3t) 

 

is a solution to 

d2y/dt2+4y=sin(3t). 

To find a solution to d2y/dt2 +4y = sin(3(t −1)), we use the property of time invariance, which means that 

a solution should be given by a time-shifted version of the solution to the first equation, that is 

y=sin(2(t−1))−15sin(3(t−1)) 
 

then 

dy/dt=2cos(2(t−1))−(3/5)cos(3(t−1))d2y/dt2=−4sin(2(t−1))+(9/5)sin(3(t−1)). 
 

Substitute into 

d2y/dt2+4y=sin(3(t−1)) 
 

giving 

−4sin(2(t−1))+(9/5)sin(3(t−1))+4(sin(2(t−1))−(1/5)sin(3(t−1)))=sin(3(t−1))⇔    sin(3(t−1))=sin(3(t−1)) 
 

which is true for all t. 
Example 14.5 

For the differential equation 

t dy/dt+y=6t2 
 
 

show that y = 2t2 is a solution 

 
 
 
 

 
(a) 

 
(b) 

show that the equation t dy/dt + y = 6t2 cannot represent a time invariant system. 

Solution (a) To show that y = 2t2 is a solution to 
t dy/dt+y=6t2 

 

we need to find dy/dt 
y=2t2    ⇒dy/dt=4t 

 

substituting into 

t  dy/dt+y=6t2 
 

gives 

t (4t)+2t2=6t2    ⇔     6t2=6t2, which is true for all t. 
 

(b) To show that this cannot represent a time-invariant system, we take an equation with a time-shifted 

input, for instance, shifted by 2 s to give 

t  dy/dt+y=6(t−2)2. 

https://www.sciencedirect.com/topics/mathematics/invariant-system


If it were to be time-invariant, then a solution to this equation would be a time-shifted solution of the 

solution to the equation in part (a), that is, y = 2(t − 2)2. To show that the equation does not represent a 

time-invariant system we just need to show that y = 2(t − 2)2 is not a solution 
y=2(t−2)2    ⇒dy/dt=4(t−2) 

 

Substitution into 

t dy/dt+y=6(t−2)2 
 

gives 

t(4(t−2))+2(t−2)2=6(t−2)2    ⇔   4t(t−2)+2(t−2)2−6(t−2)2=0    ⇔   (t−2)(4t+2t(t−2)−6(t−2))=0    ⇔   (t−2)(4t+ 
2t−4−6t+12)=0    ⇔   8(t−2)=0 

 

which is not true for all values of t, showing that y = 2(t − 2)2 is not a solution to t dy/dt + y = 6(t − 2)2 and 

therefore we have shown that t dy/dt + y = f(t) does not represent a time-invariant system. 

We have seen that linear differential equations with constant coefficients represent linear time 

invariant (LTI) systems. 

 

Causality:- A causal system is one whose output depends only on the present and the past inputs. 

A noncausal system’s output depends on the future inputs. In a sense, a noncausal system is just the 

opposite of one that has memory. 

A causal system is the one in which the output y(n) at time n depends only on the current input x(n) at 

time n, and its past input sample values such as x(n − 1), x(n − 2),…. Otherwise, if a system output 

depends on the future input values such as x(n + 1), x(n + 2),…, the system is noncausal. The noncausal 

system cannot be realized in real time. 

 

Stability:- 
 

BIBO bounded input forboundedoutputboundedinputforboundedoutput condition.Here, 

bounded means finite in amplitude. For a stable system, output should be bounded or 
finite, for finite or bounded input, at every instant of time. 

Some examples of bounded inputs are functions of sine, cosine, DC, signum and unit 
step. 

Realizability:- 

Realizability. In mathematical logic, realizability is a collection of methods in proof theory used to 
study   constructive   proofs   and    extract    additional    information    from    them.    Most    variants 
of realizability begin with a theorem that any statement that is provable in the formal system being 
studied is realizable. 

 

 
UNIT-2 
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Impulse Response:- 

In signal processing, the impulse response, or impulse response function (IRF), of a dynamic system is 
its output when presented with a brief input signal, called an impulse. More generally, an impulse 
response is the reaction of any dynamic system in response to some external change. In both cases, the 
impulse response describes the reaction of the system as a function of time (or possibly as a function of 
some other independent variable that parameterizes the dynamic behavior of the system). 

 

In all these cases, the dynamic system and its impulse response may be actual physical objects, or 
may be mathematical systems of equations describing such objects. 

Since the impulse function contains all frequencies, the impulse response defines the response of 
a linear time-invariant system for all frequencies. 

 

 

Step Response:- 

The step response of a system in a given initial state consists of the time evolution of its outputs when 
its control inputs are Heaviside step functions. In electronic engineering and control theory, step 
response is the time behaviour of the outputs of a general system when its inputs change from zero to 
one in a  very  short  time.  The  concept  can  be  extended  to  the  abstract  mathematical  notion  of  
a dynamical system using an evolution parameter. 

 

 

From a practical standpoint, knowing how the system responds to a sudden input is important because 

large and possibly fast deviations from the long term steady state may have extreme effects on the 

https://en.wikipedia.org/wiki/Signal_processing
https://en.wikipedia.org/wiki/Dynamic_system
https://en.wikipedia.org/wiki/Dirac_delta_function
https://en.wikipedia.org/wiki/Function_(mathematics)
https://en.wikipedia.org/wiki/Independent_variable
https://en.wikipedia.org/wiki/Linear_time-invariant_system
https://en.wikipedia.org/wiki/Heaviside_step_function
https://en.wikipedia.org/wiki/Electronic_engineering
https://en.wikipedia.org/wiki/Control_theory
https://en.wikipedia.org/wiki/System
https://en.wikipedia.org/wiki/Dynamical_system
https://en.wikipedia.org/wiki/Dynamical_system_(definition)#General_definition


component itself and on other portions of the overall system dependent on this component. In addition, 

the overall system cannot act until the component's output settles down to some vicinity of its final 

state, delaying the overall system response. Formally, knowing the step response of a dynamical system 

gives information on the stability of such a system, and on its ability to reach one stationary state when 

starting from another. 
 

Convolution:- 
 

The convolution theorem offers an elegant alternative to finding the inverse Laplace transform of a 

function that can be written as the product of two functions, without using the simple fraction 

expansion process, which, at times, could be quite complex, as we see later in this chapter. The 

convolution theorem is based on the convolution of two functions f(t) and g(t). According to the 

definition, the convolution of f(t) and g(t) is 
 

 

It is straightforward to demonstrate that the convolution of two functions is a commutative operation. 

Cascade interconnections:- 

Systems can be combined to form more complex systems otherwise known as the interconnection of 

systems. We will generically use xx and yy without x(t)x(t) and x[n]x[n] in this discussion with the 

understanding that this notation applies to both CT and DT systems. 
 

A series or casade interconnection is the results of an input xx into system H1H1 which results in an 

output zz that is in turn the input for system H2H2 which results in an output yy as illustrated below. 
 
 

 

 
 
 

A cascade system can mathematically be represented as: 
 

z=H1⋅xz=H1⋅x 

y=H2⋅zy=H2⋅z 

https://en.wikipedia.org/wiki/Stability_theory
https://www.sciencedirect.com/topics/engineering/inverse-laplace-transform


y=H1⋅H1⋅x 
 

 

 
 

 
Case 1: y=H2⋅H1⋅xCase 1: y=H2⋅H1⋅x 

Case2: y=H1⋅H2⋅xCase2: y=H1⋅H2⋅x 

In general 
H1⋅H2≠H2⋅H1H1⋅H2≠H2⋅H1 

exept for some special cases 

 
Multi input Multi Output representation of systems:- 

 

Systems with more than one input and/or more than one output are known as Multi-Input Multi- 

Output systems, or they are frequently known by the abbreviation MIMO. This is in contrast to systems 

that have only a single input and a single output (SISO). 
 

MIMO systems that are lumped and linear can be described easily with state-space equations. To 

represent multiple inputs we expand the input u(t) into a vector U(t) with the desired number of inputs. 

Likewise, to represent a system with multiple outputs, we expand y(t) into Y(t), which is a vector of all 

the outputs. For this method to work, the outputs must be linearly dependent on the input vector and 

the state vector. 
 

X’((t) = A X(t) + B U(t) 
 

Y(t) = C X(t) + D U(t) 



 

 

STATE VARIABLE 
REPRESENTATIONS BY 

VARIOUS METHODS 

 
 

The State Variables of a Dynamic System 

The State Differential Equation 

Signal-Flow Graph State Variables 

The Transfer Function from the State Equation 
 

1 



Introduction 

• In the previous chapter, we used Laplace transform to obtain the 
transfer function models representing linear, time-invariant, physical 
systems utilizing block diagrams to interconnect systems. 

 
• In Chapter 3, we turn to an alternative method of system modeling 

using time-domain methods. 

 
• In Chapter 3, we will consider physical systems described by an 

nth-order ordinary differential equations. 

 
• Utilizing a set of variables known as state variables, we can obtain 

a set of first-order differential equations. 

 
• The time-domain state variable model lends itself easily to computer 

solution and analysis. 
 
 
 

2 



Time-Varying Control System 

• With the ready availability of digital computers, it is convenient to 
consider the time-domain formulation of the equations representing 
control systems. 

 
• The time-domain is the mathematical domain that incorporates the 

response and description of a system in terms of time t. 

 
• The time-domain techniques can be utilized for nonlinear, time- 

varying, and multivariable systems (a system with several input and 
output signals). 

 
• A time-varying control system is a system for which one or more of 

the parameters of the system may vary as a function of time. 

 
• For example, the mass of a missile varies as a function of time as 

the fuel is expended during flight 
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Terms 
• State: The state of a dynamic system is the smallest set of variables 

(called state variables) so that the knowledge of these variables at t 
= t0, together with the knowledge of the input for t  t0, determines 
the behavior of the system for any time t  t0. 

• State Variables: The state variables of a dynamic system are the 
variables making up the smallest set of variables that determine the 
state of the dynamic system. 

• State Vector: If n state variables are needed to describe the 
behavior of a given system, then the n state variables can be 
considered the n components of a vector x. Such vector is called a 
state vector. 

• State Space: The n-dimensional space whose coordinates axes 
consist of the x1 axis, x2 axis, .., xn axis, where x1, x2, .., xn are state 
variables, is called a state space. 

• State-Space Equations: In state-space analysis, we are concerned 
with three types of variables that are involved in the modeling of 
dynamic system: input variables, output variables, and state 
variables. 
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The State Variables of a Dynamic System 

• The state of a system is a set of variables such that the knowledge 

of these variables and the input functions will, with the equations 

describing the dynamics, provide the future state and output of the 

system. 

• For a dynamic system, the state of a system is described in terms of 

a set of state variables. 
 
 
 

 

u1(t) 

 
u2(t) 

Input Signals 

y1(t) 

 
y2(t) 

Output Signals 
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System 



 
Dynamic System 

State x(t) 

State Variables of a Dynamic System 
 

x(0) initial condition 
 
 

 

u(t) Input y(t) Output 
 

 
 
 
 

The state variables describe the future response of a system, 

given the present state, the excitation inputs, 

and the equations describing the dynamics 
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The State Differential Equation 
The state of a system is described by the set of first-order differential 

equations written in terms of the state variables (x1, x2, .., xn) 
 

 
 
 

dx 
x& = 

. 

x1 = a11x1 + a12 x2 + ... + a1n xn + b11u1 + ... + b1mum 
. 

x2 = a21x1 + a22 x2 + ... + a2n xn + b21u1 + ... + b2mum 
. 

xn = an1x1 + an2 x2 + ... + ann xn + bn1u1 + ... + bnmum 

 
x   a a a x  

dt  1   11 12 1n x 
1  

b11 ..... b1m u1  
d x2  = 

a21   a22   a2n     2  +
. ........... 

 
 

dt .  . . . .     
  

xn  
 

an1 an2 ann 

  
 xn  

bn1  .... bnm 
um 

 

 

 

 
A :State matrix; B : input matrix 

A x B u 

. 

x = Ax + Bu (State differential equation) 

C : Output matrix; D : direct transmission matrix y = Cx + Du (Output equation - output signals) 
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Block Diagram of the Linear, Continuous Time Control System 
 
 
 
 
 
 
 
 
 
 
 

u(t) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

. 

x(t) = A(t)x(t) + B(t) u(t) 

y(t) = C(t) x(t) + D(t) u(t) 
8 

. 

x(t) 
+ 

+ 

 
A(t) 

 
dt 

 
B(t) 

+ 

x(t) y(t) 

+ 

D(t) 

 
C(t) 



Mass Grounded, M (kg) 
Mechanical system described by the first-order differential equation 

 

 
Appied torque Ta (t) (N - m) 

Linear velocity v(t) (m/sec) 

Linear position x(t) (m) 
 

 

 

F (t) = M 
dv 

= M 
a 

dt 

d 2 x(t) 
 

 

dt 2 

v(t) = 
1
 

M 

t 

 Fa (t)dt 
t 
0 
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v (t) 

Fa(t) M 

x (t) 



1 

Mechanical Example: Mass-Spring Damper 
A set of state variables sufficient to describe this system includes the 

position and the velocity of the mass, therefore, we will define a set of 

state variables as (x1, x2) 

x1 (t) = y(t) 

x (t) = 
dy(t) 

2 
dt 

d 2 y 
M 

dt 2 

dx 

dy 
b 

dt + 
ky = u(t) 

M  2  

dt + 
bx2 + 

kx1 = u(t) 

dx1 

dt 
= x2 ; 

dx2 

dt 

= − 
b 

x − 
k
 

m 2 M 
x1 + 

M 
u 

 
k :Spring constant 

 
10 

u(t) 

b 

Wall friction 

K 

y(t) 

M 

+ 



= k   

 

Example 1: Consider the 

previous mechanical 

system. Assume that the 

.. . 

m y+ b y+ ky = u 

This is a second order system. It means it involves two integrators. 

Let us define two variables : x1(t) and x2 (t) 

. . 
x1 (t) = y(t); x2 (t) = y(t); then x1 = x2 

system is linear. The . k b 1 

external force u(t) is  the 

input to the system, and 
the displacement y(t) of 

x2 = − 
m 

x1 − 
m 

x2 + 
m 

u 

The output equation is : y = x1 

In a vector matrix form, we have 
the mass is the output.  .  0 1


 x1  


0 


 

The displacement y(t) is 
x1   b 
 .  - - x2


 
+

 
1
 

u (State Equation) 

measured from the x 2  
 

  

  m m 
  m  

equilibrium position in the 

absence of the external 

force. This system is a 

single-input-single-output 

y = 1 0
x1  

(Output Equation) 


x2  

The state equation and the output equation are in the standard form : 
. 

x = Ax + Bu; y = Cx +Du 

system. 0 1  0  
A =  k b , B =  1 , C = 1 0, D = 0 

-  -       

 m m  m  
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Electrical and Mechanical Counterparts 
 
 
 
 

 

Energy Mechanical Electrical 

Kinetic Mass / Inertia 

0.5 mv2 / 0.5 j2 

Inductor 

0.5 Li2 

Potential Gravity: mgh 

Spring: 0.5 kx2 

Capacitor 

0.5 Cv2 

Dissipative Damper / Friction 

0.5 Bv2 

Resistor 

Ri2 
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Resistance, R (ohm) 
 
 
 
 
 
 
 

 

Appied 

Current 

voltage v(t) 

i(t) 

v(t) = Ri(t) 

i(t) = 
1 

v(t) 

R 
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v(t) 
 

R 

i(t) 



L 
 

Inductance, L (H) 
 
 
 
 
 

Appied 

Current 

voltage 

i(t) 

v(t) 

v(t) = L 
di(t)

 
dt 

i(t) = 
1 t 

v(t)dt 
t0 
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v(t) 
 

L 

i(t) 



C 
 

Capacitance, C (F) 
 
 
 
 
 
 
 

 

Appied 

Current 

voltage v(t) 

i(t) 

v(t) = 
1 t 

i(t)dt 
t0 

i(t) = C 
dv(t)

 
dt 
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v(t) 
 

C 

i(t) 



iL 
L 

iC 

u(t) vC C R 

Electrical Example: An RLC Circuit 

 
x1 = vC (t); x2 = iL (t) 

 = (1/ 2)Li2 + (1/ 2)Cv2
 

L c 

x1 (t0 ) and x2 (t0 ) is the total initial 

energy of the network 

USE KCL at the junction 
dvc 

 = C 
dt 

diL 
 

 

= +u(t) − iL +
 

+ v 
V

 

L  
dt  

= −RiL 
c 

The output of the system is represented by : vo  = RiL (t) 
- 

dx1 

dt 

= − 
1
 

C 
x + 

1 
u(t) 

2 
C

 

dx2 

dt 
+

 1 
x
 

L 
1 

− 
R 

x 
 

L 
2 

The output signal is then : y1 (t) = vo (t) = Rx2 
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i c 

o 



Example 2: Use Equations from the RLC circuit 
 

 1  0 - 
 

 

 1  
.  C  

  
x =  

 1 
L 

 

- 
R  

L  

x + 
 
C 


 

0  

u(t) 

The output is 

y = 0 R x 

When R = 3, L = 1,C = 1/2, we have 

. 0 - 2 2 
x = 

1 
- 3 x + 

0
 u 

y =0 3x 
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G11(s) 

G12(s) 

G21(s) 

Signal-Flow Graph Model 
A signal-flow graph is a diagram consisting of nodes that are 

connected by several directed branches and is a graphical 

representation of a set of linear relations. Signal-flow graphs are 

important for feedback systems because feedback theory is concerned 

with the flow and processing of signals in system. 
 
 

 
Vf(s) 

 
 

R1(s) 

 
 
 

R2(s) 

G(s) 

 
 
 
 
 
 
 

 
G22(s) 

 
 (s) 

 
 

Y1(s) 

 
 
 

Y2(s) 

 

Read Examples : 2.8 - 2.11 
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Mason’s Gain Formula for Signal Flow Graphs 
In many applications, we wish to determine the relationship between an 

input and output variable of the signal flow diagram. The transmittance 

between an input node and output node is the overall gain between 
these two nodes. 

P = 
1
 

 k 

Pk  k 

Pk = path gain of k th forward path 

 = determinant of graph 

= 1- (sum of all individual loop gain) + 

(sum of gain of all possible combinations of two nontouching loops) 

- (sumof gain products of all possible combinations of these nontouching loops) + .. 

= 1-  La +  Lb Lc -  Ld Lc L f 
a b,c d,e,f 

 k = cofactorof the kth forward path determinant of the graph with theloops 

touching the kth forward path removed, that is, the cofactor k 

by removing the loops that touch path Pk . 

is obtained from 
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1 

Signal-Flow Graph State Models 

-R/L 

 

 
G(s) = Vo (s) = 

  

-1/C 

U (s) 
. 

x1 = − x2 + 
C 

s2 + s +  
1 

u(t) 
C 

. 1 R 

x2 = 
L 

x1 − 
L 

x2 ;vo = Rx2
 

Vo(s) 
 

 

U (s) 

R / LCs 2 
= 

1+(R/ Ls)+ (1/LCs2)
;=

 

R / LC 20 

s2 + (R / L)s + (1/ LC ) 

1/C 1/s 1/L R 

U(s) 
x1 

1/s 
x2 v o 



 

 

 

 

Y (s) sm +bm−1sm−1 + .... + b1s + bo 
= G(s) = U (s) sn + a sn−1 + .... + a s + a 

n−1 1 o 

Y (s) s −(n−m) + b s−(n−m+1) + .... + b1s
−(n−1) + bos −n

 

G(s) = =
 m−1  

 

G(s) = 

U (s) 

Y (s) 

U (s) 
= 

k 

1+ 

Pk k 

 

an−1 s −1 
+ .... + a1s −(n−1) 

+ a s −n 

G(s) = k Pk 
= 

Some of the forward - path factors 
N 

q=1 
Lq 1- sumof the feedback loop factor 
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3 0 

Phase Variable Format: Let us initially consider the fourth-order 
transfer function. Four state variables (x1, x2, x3, x4); Number of 

integrators equal the order of the system. 
U(s) 

1/s 1/s 1/s 1/s 

x4 
x3 x2 x1

 

 
 

 
Y(s) 

 
 

1 1/s 1/s 1/s 1/s bo
 

 

U(s) 
-a 

x4 

G(s) = 
Y (s) 

= 

x3 

-a2 

-a1 
x2 -a 

x1 Y(s) 

 
b0 

U (s) s 4 + a3s
3 + a2s2 + a1s + a0 

= 
b0 s −4 

1+ a3s −1 + a2 s
−2 + a1s−3 + a0 s −4
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b s b s b s b s −4 

  

 

b3 

b1 
2 

1 1/s 1/s 1/s 1/s bo
 

 

U(s) x4 

-a3 -a2 

x3 -a 

. . 

x2 
x1 

-a0 
. 

Y(s) 

b s3  + b s 2  + b s + b x1 = x2 ; x2 = x3 ; x3 = x4 

G(s) = 3 2 1 0  

s 4 + a3s3 + a2 s 2 + a1s + a0 x. = −a  x  − a x − a  x − a  x + u 
−1 + −2 + −3 + 4 0  1 1 2 2   3 3 4 

= 3 2 1 0  y(t) = b0 x1 + b1x2 + b2 x3 + b3 x4 
1+ a3s −1 + a2 s−2 + a1s−3 + a0 s −4

 

x1  0 1 0 0 
x1   0  

d x2 0 0 1 0 x2 0  
    =    +  u(t) 

dt x3  

x  

 
0 0 0 1 x3 

 0  
- a - a - a - a 


x  

   

Read Examplev 3.1of the textbook 
  4   0 1 2 3

 

x1  

  4   1 

y(t) = Cx = b b b 
x2 

 

0 1 2 b3  
x3 
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x 

1 

b 



 4  



G  (s) = 
5(s +1) 

c (s +1) 

16 

(s
(
+
s + 3

2
)
)
 

  
5 

c 

Alternative Signal-Flow Graph State Models 
Motor and Load 

 
 
 
 
 
 
 
 

G  (s) = 
5(s +1)   1  

( 
6 (s +5) 

5 

(s + 2) s + 3) 

 

1 1/s 5 1 1/s I (s) 6 1/s 1 

R (s) U (s) 

-5 -2 -3 

Y (s) 

- 3 6 0 . = 0 - 2 - 20 x + 
0 r(t) y = 1 0 0x 

x 
    

0 0 - 5 1 24
 

R(s) Y(s) 

U(s) I(s) 

 
Controller 



.  = 
  

1 

The State Variable Differential Equations 

1/s 

1 
-5 

1 1/s 

1 

-20 

 
-20 

1/s 30 

-3 Diagonal form or Canonical form 

 Y(s) = T (s) =   30(s +1) 
= 

q(s) 

R(s) (s + 5)(s + 2)(s + 3) (s − s1 )(s − s2 )(s − s3 ) 

 Y(s) 

R(s) 
= T (s) = 

k1 + 
(s + 5) 

k2 +
 

(s + 2) 

k3 

(s + 3) 

k1 = −20, k2 = -10, and k3 = 30 
- 5 0 0  
0 - 2 0 x + 

1 r(t); y(t) = -20 -10 30x 
x 

    

0 0 - 3  1 
25

 



The State Variable Differential Equations 
 

. 

- 3 6 0


 0 

  

x = 0 

0 

- 2 - 5 

0 - 5 

x + 5 

1 

r(t) 

Y(s) 

R(s) 
= T (s) = 

30(s +1) 

(s + 5)(s + 2)(s + 3) 
= 

q(s) 

(s − s1 )(s − s2 )(s − s3 ) 

Y(s) 

R(s) 
= T (s) = 

k1 + 
(s + 5) 

k2 +
 

(s + 2) 

k3 
 

(s + 3) 

k1 = −20, k2 = -10, and k3 = 30 

. 

- 5 0 0 1 

  

x = 0 - 2 0  x + 1 r(t) 

0 0 - 3  1 

y(t) =- 20 -10 30x 26 


 



The Transfer Function from the State Equation 
Given the transfer function G(s), we may obtain the state variable equations 

using the signal-flow graph model. Recall the two basic equations 
 

. 

x = Ax + Bu 

y = Cx 

 

y is the single output and 

u is the single input. 

sX (s) = A X (s) + BU (s) Take the Laplace transform 

Y (s) = CX(s) 

(sI− A)X(s) = BU (s) 

Since sI - A−1  
=  (s) 

X (s) =  (s) BU (s) 

Y (s) = C  (s) BU (s) 

G (s) = 
Y (s)

 
U (s) 

= C  (s) B 

27 



dy 

   

Exercises: E3.2 (DGD) 
A robot-arm drive system for one joint can be represented by the differential equation, 

dv(t) = −k v(t) − k y(t) + k i(t) 

dt 
1 2 3 

where v(t) = velocity, y(t) = position, and i(t) is the control-motor current. Put the equations 

in state variable form and set up the matrix form for k1=k2=1 

v = 

dv 
dt 

  = −k v(t) −k y(t) + k i(t) 

dt 1
 

d  y  0 

2 3 

1  y  0  
  = dt v 


− k - k 

 
v  + 

k 
i 

   2 1    3  

Define u = i, and let k1 = k2 = 1 
. 0 1 0   y 

x = Ax + Bu; A = 
-1 -1

, B = 
k
 , x 
3  

=   

 v  
28 



   

E3.3: A system can be represented by the state vector differential 

equation of equation (3.16) of the textbook. Find the characteristic 

roots of the system (DGD). 

. 

x = Ax + Bu A = 
0 
−1 

1 
-1


 

 
  

Det (I- A) = Det   

  

-1  
 

 
1

 ( +1)  

= ( +1)+1 = 2 +  +1 = 0 

1 = − 
1

+ j 
2 

;
2 

2 

= − 
1 

− j 

2 2 

 
 

3 

3 
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100  + 20

 

E3.7: Consider the spring and mass shown in Figure 3.3 where M = 1 

kg, k = 100 N/m, and b = 20 N/m/sec. (a) Find the state vector 

differential equation. (b) Find the roots of the characteristic equation for 

this system (DGD). 
. 

x1 = 

. 

x2 = 

x2 

−100x1 − 20x2 + u 
x.  =  0 1  x + 0 u 

-100 - 20 
1 

 

 
Det 

 

(I -A) = Det 
     

 

-1  
= 2 + 20 +100 

 

=( +10)2 
= 0; 1 = 2 = -10 
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1 

  

 

E3.8: The manual, low-altitude hovering task above a moving land deck 

of a small ship is very demanding, in particular, in adverse weather and 

sea conditions. The hovering condition is represented by the A matrix 
(DGD) 

0 1 0 

A = 

0 0 

 

0 - 5 - 2  

 -1 0  

Det(I - A) = Det

0  -1 


= 

(2  + 2 + 5))= 

0 

0 

5  = 2 

1 = 0; 2 = -1+ j2; 3 = -1- j2 
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1 

 

= 

 

E3.9: See the textbook (DGD) 
 

. 1 

x1 = x2  
− x1 

2 
. 

x2 = −x1  − x2 

-1    
x =  

 

1/2 

- 3/2 

 


x, y 

 
= 1-3/2x 

s2 + 
5 

s +1 = (s + 2)

 

1  
   = 0 

2 
. − 2 
z  

 

0  

-1/2

 

 2  

z; y = - 0.35 -1.79z 
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P3.1 (DGD-ELG4152): 

Apply KVL 

v(t) = Ri(t) + L 
di

 

dt 

 

 
+ +vc 

v = 
1 

idt 
 

c 
C 

 

(a) Select the state variables as x1 

(b) The state equations are : 

= i and x2 = vc 

. 

x1 = 

. 

1 
v − 

L 
1 

R 
x − 

L 
1 

1 

L 
x2 

x2 =   x1
 

C 
. - R/L -1/L 1/L 

(c) x = 
1/C

 
0   

x + 
0 

 u 
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− − 

Fourier sine series S(x) = b sin x + b sin 2x + b sin 3x + · · ·  = b sin nx (1) 1 2 3 

Σ ∞ 

n 

n=1 

Orthogonality 

∫ π 

sin nx sin kxdx = 0 if n ƒ= k.  (3) 
0 
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FOURIER SERIES AND INTEGRALS 

 
 FOURIER SERIES FOR PERIODIC FUNCTIONS 

 
This section explains three Fourier series: sines, cosines, and exponentials eikx. 
Square waves (1 or 0 or 1) are great examples, with delta functions in the derivative. 
We look at a spike, a step function, and a ramp—and smoother functions too. 

Start with sin x. It has period 2π since sin(x + 2π) = sin x. It is an odd function 
since sin(  x) =  sin x,  and it vanishes  at x = 0 and x = π. Every function sin nx  

has those three properties, and Fourier looked at infinite combinations of the sines: 

If the numbers b1, b2,... drop off quickly enough (we are foreshadowing the im- 
portance of the decay rate) then the sum S(x) will inherit all three properties: 

Periodic   S(x + 2π) = S(x) Odd   S(−x) = −S(x) S(0) = S(π) = 0 

200 years ago, Fourier startled the mathematicians in France by suggesting that any 

function S(x) with those properties could be expressed as an infinite series of sines. 
This idea started an enormous development of Fourier series. Our first step is to 
compute from S(x) the number bk that multiplies sin kx. 

Suppose S(x) = 
Σ 

bn sin nx. Multiply both sides by sin kx. Integrate from 0 to π: 

π 

S(x) sin kxdx = 
0 

π 

b1 sin x sin kx dx + · · ·  + 

π 

bk sin kx sin kx dx + · · ·  (2) 

On the right side, all integrals are zero except the highlighted one with n = k. 
This property of “orthogonality” will dominate the whole chapter. The sines make 

90◦ angles in function space, when their inner products are integrals from 0 to π: 

317 

∫ ∫ ∫ 

0 0 



m 0 

sin kx sin kxdx = 
2 

dx − cos 2kxdx =  . (5) 
2 2 

bk = 
π

 sin kxdx = 
π 

= 
π 

, , , , , , . . .   
1 2 3 4 5 6 

π 1 3 5 7 

1 1 

Sine coefficients 

S(−x) = −S(x) 
bk = 

2 

π 

∫ π 1 
S(x) sin kxdx = 

π 

∫ π 

S(x) sin kxdx. (6) 
0 −π 

 
 
 

 

 
 
 
 

  Fourier Series and Integrals 

Zero comes quickly if we integrate 
∫ 

cos mx dx = 
Σ 

sin mx 
Σπ 

= 0 − 0. So we use this: 
  

Product of sines sin nx sin kx = 
2 

cos(n − k)x − 
2 

cos(n + k)x. (4) 

Integrating cos mx with m = n − k and m = n + k proves orthogonality of the sines. 

The exception is when n = k. Then we are integrating (sin kx)
2
 = 

1
 − 1 cos 2kx: 

∫ π ∫ π 1
 

 
 

 

  

2 2 
∫ π 1 π 

 
  

 

 

The highlighted term in equation (2) is bkπ/2. Multiply both sides of (2) by 2/π: 

Notice that S(x) sin kx is even (equal integrals from −π to 0 and from 0 to π). 

I will go immediately to the most important example of a Fourier sine series. S(x) 
is an odd square wave with SW (x) = 1  for 0 < x < π.  It is  drawn in  Figure 4.1  as  
an odd function (with period 2π) that vanishes at x = 0 and x = π. 

 
 

SW (x) = 1 
 

x 
 

 

 
 

Figure 4.1: The odd square wave with SW (x + 2π) = SW (x) = {1 or 0 or −1}. 

 
Example 1 Find the Fourier sine coefficients bk of the square wave SW (x). 

Solution For k = 1, 2 , . . .  use the first formula (6) with S(x) = 1 between 0 and π: 

2 
∫ π 

 
 

 

 

2 
Σ

− cos kx 
Σπ

 

  

2 
. 

2  0 
 

   

2   0   2   0 
Σ

 
 

    

The even-numbered coefficients b2k are all zero because cos 2kπ = cos 0 = 1. The 
odd-numbered coefficients bk = 4/πk decrease at the rate 1/k. We will see that same 
1/k decay rate for all functions formed from smooth pieces and jumps. 

Put those coefficients 4/πk and zero into the Fourier sine series for SW (x): 

Square wave    SW (x) = 
4 

Σ 
sin x 

+ 
sin 3x 

+ 
sin 5x 

+ 
sin 7x 

+ · · ·  

Σ 

(8) 
 

Figure 4.2 graphs this sum after one term, then two terms, and then five terms. You 
can  see  the all-important  Gibbs  phenomenon  appearing  as these  “partial  sums” 

0 
k 0 

0 0 0 

  

−π 0 π 2π 

(7) 



− 

1 

∫ 

− 

0 

Σ 

π 1 3 5 7 1 3 5 7 

π 1 3 π 1 9 

. Σ . Σ 
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include more terms.  Away  from the jumps,  we  safely approach SW (x) = 1 or 1. 
At x = π/2, the series gives a beautiful alternating formula for the number π: 

1 = 
4 

Σ 
1 

− 
1 

+ 
1 

− 
1 

+ · · ·  

Σ 

so that π = 4

Σ 
1 

− 
1 

+ 
1 

− 
1 

+ ·· ·

Σ

. (9) 

The Gibbs phenomenon is the overshoot that moves closer and closer to the jumps.    

Its height approaches 1.18 . . .  and it does not decrease with more terms of the series! 
Overshoot is the one greatest obstacle to calculation of all discontinuous functions 
(like shock waves in fluid flow). We try hard to avoid Gibbs but sometimes we can’t. 

 
4 sin x  sin 3x  4 sin x  sin 9x 

Solid curve  +  5 terms:   + · · ·  + 
 

4 sin x 
Dashed 

overshoot−→ 
SW = 1  

π 1 

π π 
x 

π 
x 

2 

Figure 4.2: Gibbs phenomenon: Partial sums 
ΣN 

bn sin nx overshoot near jumps. 

 
Fourier Coefficients are Best 

 

Let me look again at the first term b1 sin x = (4/π) sin x. This is the closest possible 

approximation to the square wave SW , by any multiple of sin x (closest in the least 
squares sense). To see this optimal property of the Fourier coefficients, minimize the 
error over all b1: 

 
The error is 

π 

(SW −b1 sin x)
2
 dx The b1 derivative is −2 

π 

(SW b1 sin x) sin xdx. 
0 

The integral of sin
2
 x is π/2. So the derivative is zero when b1 

This is exactly equation (6) for the Fourier coefficient. 

= (2/π) 
∫ π 

S(x) sin xdx. 

Each bk sin kx is as close as possible to SW (x). We can find the coefficients bk 

one at a time, because the sines are orthogonal. The square wave  has b2 = 0 because 
all other multiples of sin 2x increase the error. Term by term, we are “projecting the 
function onto each axis sin kx.” 

 
 

Fourier Cosine Series 

The cosine series applies to even functions with C(−x) = C(x): 

∞ 

Cosine series C(x) = a0 + a1 cos x + a2 cos 2x + · · ·  = a0 + an cos nx. (10) 
n=1 

∫ 

0 

− 



2δ(x) ^ 2δ(x − 2π) ^ 

Up-down UD(x) 
  

−π 0 π 2π 

7
−2δ(x + π) 

7
−2δ(x − π) 

∫ 

Σ Σ 

∫ 

Cosine coefficients 

C(−x) = C(x) 
ak = 

2 

π 

∫ π 1 
C(x) cos kxdx = 

π 

∫ π 

C(x) cos kxdx. (13) 
0 −π 

 

 
 

 

 

 

  Fourier Series and Integrals 

 
Every cosine has period 2π. Figure 4.3 shows two even functions, the repeating 

ramp RR(x) and the up-down train UD(x) of delta functions. That sawtooth 
ramp RR is the integral of the square wave. The delta functions in UD give the 
derivative of the square wave. (For sines, the integral and derivative are cosines.) 
RR and UD will be valuable examples, one smoother than SW , one less smooth. 

First we find formulas for the cosine coefficients a0 and ak. The constant term a0 
is the average value of the function C(x): 

1 π 

a0 = Average a0 = 
0 

 

1 
C(x) dx = 

2π 

π 
C(x) dx. (11) 

−π 

I just integrated every term in the cosine series (10) from 0 to π. On the right side, 
the integral of a0 is a0π (divide both sides by π). All other integrals are zero: 

π 

cos nx dx = 
0 

sin nx 
π

 
 

 

n 0 
= 0 − 0 = 0. (12) 

In words, the constant function 1 is orthogonal to cos nx over the interval [0, π]. 

The other cosine coefficients ak come from the orthogonality of cosines. As with 
sines, we multiply both sides of (10) by cos kx and integrate from 0 to π: 

π π 

C(x) cos kxdx = 
0 0 

 
a0 cos kxdx+ 

π 

a1 cos x cos kxdx+··+ 
 

π 

ak(cos kx)2 
0 

 
dx+·· 

You know what is coming. On the right side, only the highlighted term can be 
nonzero. Problem 4.1.1 proves this by an identity for cos nx cos kx—now (4) has a 
plus sign. The bold nonzero term is akπ/2 and we multiply both sides by 2/π: 

Again the integral over a full period from −π to π (also 0 to 2π) is just doubled. 
 
 
 
 
 

x x 

−π 0 π 2π 

Repeating Ramp RR(x) 

Integral of Square Wave 

 

Figure 4.3: The repeating ramp RR and the up-down UD (periodic spikes) are even. 
The derivative of RR is the odd square wave SW . The derivative of SW is UD. 

0 

RR(x)=|x| 

  

π 

∫ 

∫ 

∫ ∫ ∫ 



∫ 

∫ 

− 

π 1 3 5 7 

2 4 12 32 52 72 

π 
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Example 2 Find the cosine coefficients of the ramp RR(x) and the up-down UD(x). 

 

Solution The simplest way is to start with the sine series for the square wave: 

SW (x) = 
4 

Σ 
sin x 

+ 
sin 3x 

+ 
sin 5x 

+ 
sin 7x 

+ · · ·  

Σ 

.
 

Take the derivative of every term to produce cosines in the up-down delta function: 

4 
Up-down series  UD(x) =     [cos x + cos 3x + cos 5x + cos 7x + ···  ] . (14) 

Those coefficients don’t decay at all. The terms in the series don’t approach zero, so 
officially the series cannot converge. Nevertheless it is somehow correct and important. 

Unofficially this sum of cosines has all 1’s at x = 0  and all −1’s at x = π.  Then +∞ 
and −∞ ar∫e consistent with 2δ(x)  and −2δ(x − π).  The true way to recognize δ(x)  is 

  

For the repeating ramp, we integrate the square wave series for SW (x) and add the 
average ramp height a0 = π/2, halfway from 0 to π: 

Ramp series RR(x) = 
π 

− 
π 

Σ 
cos x 

+ 
cos 3x 

+ 
cos 5x 

+ 
cos 7x 

+ ·· ·  

Σ 

. (15) 

 

The constant of integration is a0. Those coefficients ak drop off like 1/k
2
. They could be 

computed directly from formula (13) using x cos kxdx, but this requires an integration 
by parts (or a table of integrals or an appeal to Mathematica or Maple). It was much 
easier to integrate every sine separately in SW (x), which makes clear the crucial point: 

Each “degree of smoothness” in the function is reflected in a faster decay rate of its 

Fourier coefficients ak and bk. 

 
No decay Delta functions (with spikes) 
1/k decay Step functions (with jumps) 
1/k2 decay Ramp functions (with corners) 
1/k4 decay Spline functions (jumps in f JJJ) 

rk  decay  with  r < 1 Analytic functions like 1/(2 − cos x) 

Each integration divides the kth coefficient by k. So the decay rate has an extra 
1/k. The “Riemann-Lebesgue lemma” says that ak and bk approach zero for any 

continuous function (in fact whenever     |f (x)|dx is finite).  Analytic functions achieve 

a new level of smoothness—they can be differentiated forever. Their Fourier series 
and Taylor series in Chapter 5 converge exponentially fast. 

The poles of 1/(2 cos x) will be complex solutions of cos x = 2. Its Fourier series 
converges quickly because rk decays faster than any power 1/kp. Analytic functions 
are ideal for computations—the Gibbs phenomenon will never appear. 

Now we go back to δ(x) for what could be the most important example of all. 

δ(x)f (x) dx = f (0) and Example 3 will do this. by the test 



1 

2 

− 

2 

2 ± 

2π 

The right test for the delta function δ(x) is to multiply by a smooth f (x) =  ak cos kx 

the sum is 1/2π or −1/2π. The bumps in the partial sums don’t get smallerΣthan 1/2π. 

smooth f (x) =  ak cos kx converges to the number f (0). 

Delta function δ(x) = + [cos x + cos 2x + cos 3x + · · ·  ] . 
1 1 

2π π 
(16) 

of δ N (x) to δ(x) −π 
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Example 3 Find the (cosine) coefficients of the delta function δ(x), made 2π-periodic. 

 

Solution The spike occurs at the start of the interval [0, π] so safer to integrate from 

−π to π. We find a0 = 1/2π and the other ak = 1/π (cosines because δ(x) is even): 

1 
∫ π 1 1 

∫ π 1 

Average a0 = 
2π

 δ(x) dx = 
2π 

Cosines ak = 
π

 

δ(x) cos kxdx = 

−π π 

Then the series for the delta function has all cosines in equal amounts: 

Again this series cannot truly converge (its terms don’t approach zero). But we can graph 
the sum after cos 5x and after cos 10x. Figure 4.4 shows how these “partial sums” are 
doing their best to approach δ(x). They oscillate faster and faster away from x = 0. 

Actually there is a neat formula for the partial sum δN (x) that stops at cos Nx. Start 
by writing each term 2 cos θ as eiθ + e−iθ: 

 
1 

δN = 
2π 

 
1 

[1 + 2 cos x + · · ·  +2 cos Nx] = 
2π

 
Σ
1 + eix + e−ix + · · · + eiNx + e−iNx

Σ 
. 

This is a geometric progression that starts from e−iNx and ends at eiNx. We have powers 
of the same factor eix. The sum of a geometric series is known: 

 

i(N + 1 )x 
 

 

−i(N + )x 1 
 

 
 

 Partial sum 
up to cos Nx  

1 e 
δN (x) = 

2π
 

2 − e 

eix/2 − e−ix/2 

2 

=   
1  sin(N + 2 )x

. (17)
 

2π sin 
1
 x 

This is the function graphed in Figure 4.4. We claim that for any N the area underneath 
δN (x)  is 1.  (Each cosine integrated from    π  to π  gives zero.  The integral of 1/2π  is 
1.) The central “lobe” in the graph ends when sin(N + 

1
 )x comes down to zero, and 

that happens when (N + 
1
 )x = π. I think the area under that lobe (marked by bullets) 

approaches the same number 1.18 . . .  that appears in the Gibbs phenomenon. 

In what way does δN (x) approach δ(x)? The terms cos nx in the series jump around 

at each point x = 0, not approaching zero. At x = π we see 
1
 [1 − 2+ 2  − 2+ ···  ] and 

 

and integrate, because we only know δ(x) from its integrals 
∫ 

δ(x)f (x) dx = f (0): 

Weak convergence 
∫ π

 

 

In this integrated sense (weak sense) the sums δN (x) do approach the delta function ! 

The convergenceΣof a0 + · · · + aN  is the statement that at x = 0 the Fourier series of a 

δN(x)f (x) dx = a0 + ·· · + aN → f (0) . (18) 

−π 



∫ ∫ 

Complete Fourier series F (x) = a  + a  cos nx + b sin nx . 0 

∞ 
Σ 

n 

Σ ∞ 

n (19) 
n=1 n=1 
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δ10(x) height 21/2π 
 

 

 

 

δ5(x) height 11/2π 

 

 

 

 
−π 0 

height 1/2π 

π height −1/2π 

 

Figure 4.4: The sums δN (x) = (1 + 2 cos x + ···  +2 cos Nx)/2π try to approach δ(x). 

 
Complete Series: Sines and Cosines 

Over the half-period [0, π], the sines are not orthogonal to all the cosines. In fact the 

integral of sin x times 1 is not zero.  So for functions F (x) that are not odd or even,  

we move to the complete series (sines plus cosines) on the full interval. Since our 

functions are periodic, that “full interval” can be [−π, π] or [0, 2π]: 

On every “2π interval” all sines and cosines are mutually orthogonal.  We  find  the 

Fourier coefficients ak and bk in the usual way:  Multiply (19) by 1 and cos kx and 

sin kx, and integrate both sides from −π to π: 
 

1 
a0 = 
2π

 

π 1 π 

F (x) dx ak = 
π

 
−π −π 

1 π 

F (x) cos kxdx bk = 
π

 
−π 

 
F (x) sin kxdx. (20) 

 

Orthogonality kills off infinitely many integrals and leaves only the one we want. 

Another approach is to split F (x) = C(x) + S(x) into an even part and an odd 

part. Then we can use the earlier cosine and sine formulas. The two parts are 
 

 

C(x) = F 

 
 

even (x) = 
F (x)+ F (−x) 

2 

 

S(x) = F 

 
 

odd (x) = 
F (x) − F (−x) 

. (21)
 

2 
 

The even part gives the a’s and the odd part gives the b’s. Test on a short square 

pulse from x = 0 to x = h—this one-sided function is not odd or even. 

∫ 



. 

h 

∫ 

− 

2 

ak = 
π

 πk 
bk = 

π 
. (22) 

πk 

ǁf ǁ 
2 = |f (x)| dx.  These functions fill Hilbert space.  The rules of geometry hold: 
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Example 4 Find the a’s and b’s if F (x) = square pulse = 

1 for 0 < x < h
 

0  for h < x < 2π 
 

Solution The integrals for a0 and ak and bk stop at x = h where F (x) drops to zero. 
The coefficients decay like 1/k because of the jump at x = 0 and the drop at x = h: 

1 
Coefficients of square pulse a0 = 

2π
 

h h 
1 dx = =  average 

0 2π 

1 
∫ h 

 
 

 

 

sin kh 
 

 

1 
∫ h 

 
 

 

 

1 − cos kh 
 

 

If we divide F (x) by h, its graph is a tall thin rectangle: height 
1
 , base h, and area = 1. 

When h approaches zero, F (x)/h is squeezed into a very thin interval. The tall 

rectangle approaches (weakly) the delta function δ(x). The average height is area/2π = 
1/2π. Its other coefficients ak/h and bk/h approach 1/π and 0, already known for δ(x): 

F (x) ak 1 sin kh 1 
→ δ(x) = → and 

bk 
= 

1 − cos kh 
→ 0 as h → 0. (23) 

h h π kh π h πkh 

When the function has a jump, its Fourier series picks the halfway point. This 
example would converge to F (0) = 

1
 and F (h) = 

1
 , halfway up and halfway down. 

2 2 

The Fourier series converges to F (x) at each point where the function is smooth. 
This is a highly developed theory, and Carleson won the 2006 Abel Prize by proving 
convergence for every x except a set of measure zero. If the function has finite energy 

|F (x)|2 dx, he showed that the Fourier series converges “almost everywhere.” 

 
Energy in Function = Energy in Coefficients 

 

There is an extremely important equation (the energy identity ) that comes from 
integrating (F (x))

2
. When we square the Fourier series of F (x), and integrate from 

2 
π to π, all the “cross terms” drop out. The only nonzero integrals come from 1 

and cos
2
 kx and sin

2
 kx, multiplied by a

2
 and a

2
 and b

2
: 

0 k k 

 
length squared of a vector, except the vector is a function. The right side comes from 
an infinitely long vector of a’s and b’s. The lengths are equal, which says that the 
Fourier  transf√orm  from√function  to  vector  is  like  an  orthogonal matrix.  Normalized 

 

by constants 2π and π, we have an orthonormal basis in function space. 

What is this function space ? It is like ordinary 3-dimensional space, except the 
“vectors∫” are functions. Their length ǁf ǁ comes from integrating instead of adding: 

Energy in  F (x) = (a  + a  cos kx + b sin kx) dx 
∫ 

∫ π 
−π 

Σ 

2 2 2 
−π (F (x)) dx = 2πa + π(a + b + a + b + ·· · ). 0 1 1 2 2 

Σ 2 
0 k k 

π 2 2 2 
(24) 

The energy in F (x) equals the energy in the coefficients. The left side is like the 

0 0 

∫ 

cos kxdx = sin kxdx = 



∫ 

− − 

Complex Fourier series F (x) = c0 + c1eix + c−1e−ix + ···  = 
Σ ∞ 

c e (25) inx 
n 

n=−∞ 

Fourier coefficients 

∫ π 

F (x)e dx = 2πck −ikx 
for k = 0, ±1,...  (26) 

−π 
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Length ǁf ǁ2 = (f, f ) comes from the inner product (f, g) = f (x)g(x) dx 

Orthogonal functions (f, g) = 0 produce a right triangle: ǁf + gǁ2 = ǁf ǁ2 + ǁgǁ2
 

I have tried to draw Hilbert space in Figure 4.5. It has infinitely many axes. The 
energy identity (24) is exactly the Pythagoras Law in infinite-dimensional space. 

 

 
v2k−1 = 

 
cos kx 
√

π < 

sin kx 

 

’ 
v2 = 

 
sin x 
√

π
 

v2k = √
π

 7 f = A0v0 + A1v1 + B1v2 + ···  

function in Hilbert space 
2 2 2 2 

90◦ 1 
L (vi, vj)= 0 € 

 
 

ǁf ǁ = A0 + A1 + B1 + ···  

cos x 

v0 = √
2π 

v1 = √
π

 
 
 

Figure 4.5: The Fourier series is a combination of orthonormal v’s (sines and cosines). 
 

 

Complex  Exponentials ckeikx 

This is a small step and we have to take it. In place of separate formulas for a0 and ak 

and bk, we will have one formula for all the complex coefficients ck. And the function 
F (x) might be complex (as in quantum mechanics). The Discrete Fourier Transform 
will be much simpler when we use N complex exponentials for a vector. We practice 
in advance with the complex infinite series for a 2π-periodic function: 

If every cn = c−n, we can combine einx with e−inx into 2 cos nx. Then (25) is the 

cosine series for an even function. If every cn = c−n, we use einx e−inx = 2i sin nx. 
Then (25) is the sine series for an odd function and the c’s are pure imaginary. 

To find ck, multiply (25) by e−ikx (not eikx) and integrate from −π to π: 

π 

F (x)e−ikx 
−π 

 

dx = 
π 

c0e
−ikx 

−π 

 

dx+ 
π 

c1e
ix 

−π 

 

e−ikx 
dx+ · · ·+ 

π 

cke
ikx 

−π 

 

e−ikx dx + · · ·  

The complex exponentials are orthogonal. Every integral on the right side is zero, 
except for the highlighted term (when n = k and eikxe−ikx = 1). The integral of 1 is 2π. 
That surviving term gives the formula for ck: 

∫ ∫ ∫ ∫ 



− − 

. 

Σ Σ . Σ 

2π 

h 2π 
−∞ 

2 0 elsewhere in [−π, π] 

∫ 

Σ 
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Notice that c0 = a0  is still  the average  of F (x), because e

0
 = 1.  The orthogonality  

of einx and eikx is checked by integrating, as always. But the complex inner product 
(F, G) takes the complex conjugate G of G. Before integrating, change eikx to e−ikx: 

Complex inner product Orthogonality of einx and eikx 

π 
(F, G) =  

 
 

F (x)G(x) dx 
π 

ei(n−k)xdx = 
Σ 

ei(n−k)x 
Σπ 

 
= 0 . (27) 

−π −π i(n − k) −π 
 

Example 5 Add the complex series for 1/(2 eix) and 1/(2 e−ix). These geometric 
series have exponentially fast decay from 1/2k. The functions are analytic. 

 
1 eix 

+ + 
2 4 

 
e2ix 

8   
+ ·· + 

1 e−ix 

+ + 
2 4 

e−2ix 

8 
+ ·· 

 
= 1 + 

cos x 
+ 

2 

cos 2x 
+ 

4 

cos 3x 

8 
+ ·· 

When we add those functions, we get a real analytic function: 

1 1 (2 − e−ix)+ (2 − eix) 4 − 2 cos x 

2 − eix  
+ 

2 − e−ix  
= 

(2 − eix)(2 − e−ix) 
= 

5 − 4 cos x 
(28)

 

This ratio is the infinitely smooth function whose cosine coefficients are 1/2k. 

 

Example 6 Find ck 
for the 2π-periodic shifted pulse F (x) = 

1 for s ≤ x ≤ s + h
 

0 elsewhere in [−π, π] 

Solution The integrals (26) from −π to π become integrals from s to s + h: 

 
1 

ck = 
2π

 

s + h 
 

s 
1 · e−ikx 

 

1 
dx = 

2π 

e−ikx s + h 
 

 

−ik s 

 

= e−iks 1 − e−ikh 
 

2πik 

 
. (29) 

 

Notice above all the simple effect of the shift by s. It “modulates” each ck by e−iks. The 

energy is unchanged, the integral of |F |2 just shifts, and all |e−iks| = 1: 

Shift    F (x)    to   F (x − s)  ←→ Multiply   ck by  e−iks. (30) 

Example 7 Centered pulse with shift s = −h/2. The square pulse becomes centered 
around x = 0. This even function equals 1 on the interval from −h/2 to h/2: 

h ikh/2 1 − e−ikh
 

 
  

1 sin(kh/2) 
 

 Centered by s = − 
2 

ck = e = 
2πik 2π 

. 
k/2 

Divide by h for a tall pulse. The ratio of sin(kh/2) to kh/2 is the sinc function: 

Tall pulse 
Fcentered 

=  
1 Σ

 sinc 

. 
kh

Σ 

eikx = 

. 
1/h for − h/2 ≤ x ≤ h/2 

 

That division by h produces area = 1. Every coefficient approaches 1 as h → 0. 
The Fourier series for the tall thin pulse again approaches the Fourier series for δ(x). 

∫ 

. . 

∫ 

∞ 

Σ 



2 2 

2 

Σ 

∞ 

F (x). The length of c is 2π |ck| = |F | dx. The function space is often denoted 

0 
π 

Σ Σ 
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Hilbert space can containΣvectors c∫= (c0, c1, c−1, c2, c−2, · · · ) instead of functions 

 
 
 

 by L
2
 and the vector space is A

2
. The energy identity is trivial (but deep). Integrating 

the Fourier series for F (x) times F (x), orthogonality kills every cnck for n ƒ= k. This 

leaves the ckck = |ck|2: 
π 

|F (x)| dx = 
−π 

π 

( cneinx)( 
−π 

cke−ikx)dx = 2π(|c0|2 + |c1|2 + |c−1|2 + ··) . (31) 

 

This is Plancherel’s identity: The energy in x-space equals the energy in k-space. 

Finally I want to emphasize the three big rules for operating on F (x) = ckeikx: 

 
dF 

1. The   derivative  has Fourier coefficients ikck (energy moves to high k). 
dx 

2. The integral of F (x) has Fourier coefficients 
ck 

,k = 0 (faster decay). 
ik 

3. The shift to F (x− s) has Fourier coefficients e−iksck (no change in energy). 

 
Application: Laplace’s Equation in a Circle 

 
Our first application is to Laplace’s equation. The idea is to construct u(x, y) as an 
infinite series, choosing its coefficients to match u0(x, y) along the boundary. Every- 
thing depends on the shape of the boundary, and we take a circle of radius 1. 

Begin with the simple solutions 1, r cos θ, r sin θ, r
2
 cos 2θ, r

2
 sin 2θ, ... to Laplace’s 

equation. Combinations of these special solutions give all solutions in the circle: 
 
 

(32) 

 
It remains to choose the constants ak and bk to make u = u0 on the boundary. 

For a circle u0(θ) is periodic, since θ and θ + 2π give the same point: 

Set  r = 1 u0(θ) = a0 + a1 cos θ + b1 sin θ + a2 cos 2θ + b2 sin 2θ + ·· ·  (33) 

This is exactly the Fourier series for u0. The constants ak and bk must be the 

Fourier coefficients of u0(θ). Thus the problem is completely solved, if an infinite 
series (32) is acceptable as the solution. 

 
Example 8 Point source u0 = δ(θ) at θ = 0 The whole boundary is held at u0 = 0, 
except for the source at x = 1, y = 0. Find the temperature u(r, θ) inside. 

 

1 
Fourier series for δ u (θ) =  

1 1 
+ (cos θ + cos 2θ + cos 3θ + ·· ·  ) =  

Σ 
einθ 

 

 −∞ 

u(r, θ) = a0 + a1r cos θ + b1r sin θ + a2r
2
 cos 2θ + b2r

2
 sin 2θ + ···  

∫ ∫ 

2π 2π 



π 

∫ 

0 
π 1 3 5 

Rapid decay inside u(r, θ) =  
π 

+ 
1 

+ 
3 5 

+ · · ·   

Temperature inside circle 
1 

u(r, θ) =  
2π 1+ r2 − 2r cos θ 

2 

1 − r (35) 

1 
Poisson’s formula u(r, θ) =  

2π 

∫ π 

u0(ϕ) 

2 
1 − r 

1+ r2 − 2r cos(θ − ϕ) 
dϕ (37) 

−π 
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Inside the circle, each cos nθ is multiplied by rn: 

 

1 
Infinite series for u u(r, θ) =  

2π 
+ 

1 
(r cos θ + r

2
 cos 2θ + r

3
 cos 3θ + ··· ) (34) 

 

Poisson managed to sum this infinite series! It involves a series of powers of reiθ. 
So we know the response at every (r, θ) to the point source at r = 1, θ = 0: 

At the center r = 0, this produces the average of u0 = δ(θ) which is a0 = 1/2π. On the 
boundary r = 1, this produces u = 0 except at the point source where cos 0 = 1: 

 

1 1 − r
2
 1 1+ r 

 
 

On the ray θ = 0 u(r, θ) = 
2π 1+ r2 − 2r 

= 
2π 1 − r

. (36) 

As r approaches 1, the solution becomes infinite as the point source requires. 
 
 

Example 9 Solve for any boundary values u0(θ) by integrating over point sources. 

When the point source swings around to angle ϕ, the solution (35) changes from θ to 

θ − ϕ. Integrate this “Green’s function” to solve in the circle: 

Ar r = 0 the fraction disappears and u is the average u0(ϕ)dϕ/2π. The steady 
state temperature at the center is the average temperature around the circle. 

Poisson’s formula illustrates a key idea. Think of any u0(θ) as a circle of point sources. 

The source at angle ϕ = θ produces the solution inside the integral (37). Integrating 
around the circle adds up the responses to all sources and gives the response to u0(θ). 

 

Example 10 u0(θ) = 1 on the top half of the circle and u0 = −1 on the bottom half. 

Solution The boundary values are the square wave SW (θ). Its sine series is in (8): 

Square wave  for u (θ) SW (θ) = 
4 

Σ 
sin θ 

+ 
sin 3θ 

+ 
sin 5θ 

+ ·· ·  

Σ 

(38) 

Inside the circle, multiplying by r, r
2
, r

3
,... gives fast decay of high frequencies: 

4 
Σ 

r sin θ 
 

  

r
3
 sin 3θ 

 

r
5
 sin 5θ 

Σ
 

 

 

Laplace’s equation has smooth solutions, even when u0(θ) is not smooth. 

(39) 



Σ 

− 

Σ 2 

Heat equation ut = uxx with u(x, 0) = 1 and u(0, t) = u(π, t) = 0. (40) 

Substitute into ut = uxx bn
J (t) sin nx = −n

2
bn(t) sin nx bn(t) = e−n t bn(0). 

2 

Box function/square wave 
Σ ∞ 

b (0) sin nx = 1  
4 

n b (0) = for odd n n 

1 
πn 
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WORKED EXAMPLE 
 
 

A hot metal bar is moved into a freezer (zero temperature). The sides of the bar 
are coated so that heat only escapes at the ends. What is the temperature u(x, t)  
along the bar at time t? It will approach u = 0 as all the heat leaves the bar. 

 
Solution The heat equation is ut = uxx. At t = 0 the whole bar is at a constant 

temperature, say u = 1. The ends of the bar are at zero temperature for all time t> 0. 
This is an initial-boundary value problem: 

Those zero boundary conditions suggest a sine series. Its coefficients depend on t: 
 

∞ 

Series solution of the heat equation u(x, t) = bn(t) sin nx. (41) 
1 

 

The form of the solution shows separation of variables. In a comment below, we 
look for products A(x) B(t) that solve the heat equation and the boundary conditions. 
What we reach is exactly A(x) = sin nx and the series solution (41). 

Two steps remain. First, choose each bn(t) sin nx to satisfy the heat equation: 

Notice bn
J  = n

2
bn.  Now determine each bn(0) from the initial condition u(x, 0) = 1 

on (0, π). Those numbers are the Fourier sine coefficients of SW (x) in equation (38): 

This completes the series solution of the initial-boundary value problem: 
 

 

Bar temperature u(x, t) =  
odd n 

4 
e−n t sin nx. (42) 

πn 

 

For  large  n  (high  frequencies)  the  decay  of  e−n
2t  is  very  fast.   The  dominant  term 

(4/π)e−t sin x for large times will come from n = 1. This is typical of the heat 
equation and all diffusion, that the solution (the temperature profile) becomes very 
smooth as t increases. 

Numerical difficulty I regret any bad news in such a beautiful solution. To compute 

u(x, t), we would probably truncate the series in (42) to N terms. When that finite 
series is graphed on the website, serious bumps appear in uN (x, t). You ask if there 
is a physical reason but there isn’t. The solution should have maximum temperature 
at the midpoint x = π/2, and decay smoothly to zero at the ends of the bar. 



− 

2 

A B 
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Those unphysical bumps  are  precisely  the  Gibbs  phenomenon.  The  initial 

u(x, 0) is 1 on (0, π) but its odd reflection is −1 on (−π, 0). That jump has produced 

the slow 4/πn decay of the coefficients, with Gibbs oscillations near x = 0 and x = π. 
The sine series for u(x, t) is not a success numerically. Would finite differences help? 

 
Separation of variables We found bn(t) as the coefficient of an eigenfunction sin nx. 
Another good approach is to put u = A(x) B(t) directly into ut = uxx: 

Separation A(x) B J(t) = A JJ(x) B(t)  requires  
A JJ(x)  

=  
B J(t)  

= constant.   (43) 
A(x) B(t) 

 

A JJ/A is constant in space, B J/B is constant in time, and they are equal: 

A JJ  
= −λ gives A = sin 

√
λ x and  cos 

√
λ x 

B J  
= −λ gives B = e−λt 

 

The products AB = e−λt sin 
√

λx and e−λt cos 
√

λx solve the heat equation for any 

number λ.  But the boundary condition u(0, t) =√0  eliminates the cosines.  Then 

u(π, t) = 0 requires λ = n
2
 = 1, 4, 9 , . . .  to have sin λπ = 0. Separation of variables 

has recovered the functions in the series solution (42). 

Finally u(x, 0) = 1 determines the numbers 4/πn for odd n. We find zero for even 
n because sin nx has n/2 positive loops and n/2 negative loops. For odd n, the extra 
positive loop is a fraction 1/n of all loops, giving slow decay of the coefficients. 

Heat bath (the opposite problem) The solution on the website is 1 u(x, t), 
because it solves a different problem. The bar is initially frozen at U (x, 0) = 
0. It is placed into a heat  bath  at  the  fixed  temperature  U  =  1  (or  U  =  T0). 
The new unknown is U and its boundary conditions are no longer zero. 

The heat equation and its boundary conditions are solved first by UB(x, t). In 
this example UB ≡ 1 is constant. Then the difference V = U − UB has zero boundary 

values, and its initial values are V = −1. Now the eigenfunction method (or sepa- 

ration of variables) solves for V . (The series in (42) is multiplied by −1 to account 

for V (x, 0) = −1.) Adding  back  UB solves  the heat  bath problem:  U  = UB + V  = 

1 − u(x, t). 

Here UB ≡ 1 is the steady state solution at t = ∞, and V is the transient solution. 

The transient starts at V = −1 and decays quickly to V = 0. 

Heat bath at one end The website problem is different in another way too. The 

Dirichlet  condition  u(π, t)  =  1  is  replaced  by  the  Neumann  condition  u J(1, t)  =  0. 
Only the left end is in the heat bath.  Heat flows down the metal bar and out at the 
far end, now located at x = 1.  How does the solution change for fixed-free? 

Again UB = 1 is a steady state. The boundary conditions apply to V = 1 − UB: 

Fixed-free 

eigenfunctions 
V (0) = 0   and V J(1) = 0   lead to   A(x) = sin 

.

n + 
1 
Σ 

πx.  (44) 



2 

2 

. Σ 

2 

∫ 
2 

∞ 

n 
2 

2 

9 25 

1 
T T 

∫ 

odd n 
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Those eigenfunctions give a new form for the sum of Bn(t) An(x): 

Fixed-free solution V (x, t) = 
Σ 

B (0) e−(n+
 
1 )2 π2 t sin 

.

n + 
1 
Σ 

πx. (45) 

All  frequencies  shift  by  
1
  and  multiply  by  π,  because  A JJ  =  −λA  has  a  free  end 

at x = 1.  The crucial question is:  Does  orthogonality  still  hold for these new 
eigenfunctions  sin   n + 

1
   πx  on  [0, 1]?    The  answer  is  yes  because  this  fixed-free 

“Sturm–Liouville problem” A JJ = −λA is still symmetric. 

Summary The series solutions all succeed but the truncated series all fail. We can 
see the overall behavior of u(x, t) and V (x, t). But their exact values close to the 
jumps are not computed well until we improve on Gibbs. 

We could have solved the fixed-free problem on [0, 1] with the fixed-fixed solution 
on [0, 2]. That solution will be symmetric around x = 1 so its slope there is zero. 
Then rescaling x by 2π changes sin(n + 

1
 )πx into sin(2n + 1)x. I hope you like the 

graphics created by Aslan Kasimov on the cse website. 

Problem Set 4.1 

1 Find the Fourier series on −π ≤ x ≤ π for 

(a) f (x) = sin
3
 x, an odd function 

(b) f (x) = | sin x|, an even function 

(c) f (x) = x 

(d) f (x) = ex, using the complex form of the series. 

What are the even and odd parts of f (x) = ex and f (x) = eix? 

2 From Parseval’s formula the square wave sine coefficients satisfy 
π π 

π(b
2
 + b

2
 + · · · ) = |f (x)|  dx = 1 dx = 2π. 

1 2 
−π −π 

Derive the remarkable sum π
2
 = 8(1 + 

1
 + 

1
 + ··· ). 

3 If a square pulse is centered at x = 0 to give 
 

π 
f (x) = 1 for |x| < 

2 
,f (x) = 0 for 

π 

2 
< |x| < π, 

draw its graph and find its Fourier coefficients ak and bk. 

4 Suppose f has period T instead of 2x, so that f (x) = f (x + T ). Its graph from 

−T/2  to  T/2  is  repeated  on each  successive  interval  and  its  real  and complex 
Fourier series are 

 

f (x) = a 
2πx 

+ a  cos + b sin 
2πx 

+ · · ·  = 
Σ 

c 
 

 

eik2πx/T 

Multiplying by the right functions and integrating from −T/2 to T/2, find ak, 
bk, and ck. 

−∞ 

0 1 k 



.
∫ 

2 2 

iθ 

− 

. Σ
−−1 

π 1 27 125 

2 4 3 9 

2 4 
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5 Plot the first three partial sums and the function itself: 

x(π − x) =  
8 
.

sin x 
+ 

sin 3x 
+ 

sin 5x 
+ · · · 

Σ 

, 0 < x < π. 

 

Why is 1/k
3
 the decay rate for this function? What is the second derivative? 

6 What constant function is closest in the least square sense to f = cos
2
 x? What 

multiple of cos x is closest to f = cos
3
 x? 

 

7 Sketch the 2π-periodic half wave with f (x) = sin x for 0 < x < π and f (x) = 0 
for −π < x < 0. Find its Fourier series. 

8 (a) Find the lengths of the vectors u = (1, 
1
 , 

1
 , 

1
 , . .  .) and v = (1, 

1
 , 

1
 , . .  .) in 

2   4   8 3 9 

Hilbert space and test the Schwarz inequality |u
T
v|2 ≤ (u

T
u)(v

T
v). 

(b) For the functions f = 1 + 
1
 eix + 

1
 e

2ix + ··· and g = 1 + 
1
 eix + 

1
 e

2ix + ···  
use part (a) to find the numerical value of each term in 

 

π 

. 
−π 

 

 

f (x) g(x) dx . ≤ 
π 

|f (x)|  dx 
−π 

π 

|g(x)| dx. 
−π 

 

Substitute for f and g and use orthogonality (or Parseval). 
 

9 Find the solution to Laplace’s equation with u0 = θ on the boundary. Why is 
this the imaginary part of 2(z − z

2
/2 + z

3
/3 · · · ) = 2 log(1 + z)?  Confirm that 

on the unit circle z = e , the imaginary part of 2 log(1 + z) agrees with θ. 
 

10 If the boundary condition for Laplace’s equation is u0 = 1 for 0 < θ < π and 
u0 = 0 for π  < θ < 0, find the Fourier series solution u(r, θ) inside the unit 
circle. What is u at the origin? 

 

11 With boundary values u0(θ) = 1 + 
1
 eiθ + 

1
 e

2iθ + ···  , what is the Fourier series 

solution to Laplace’s equation in the circle? Sum the series. 
 

12 (a) Verify that the fraction in Poisson’s formula satisfies Laplace’s equation. 

(b) What is the response u(r, θ) to an impulse at the point (0, 1), at the angle 
ϕ = π/2? 

(c) If u0(ϕ) = 1 in the quarter-circle 0 < ϕ < π/2 and u0 = 0 elsewhere, show 
that at points on the horizontal axis (and especially at the origin) 

 

 
u(r, 0) = 

1 1 
+ 

2 2π 

1 r
2
 

tan 
−2r 

 

by using 

∫ 
dϕ 1 −1 

.√
b2  − c2  sin ϕ 

Σ
 

b + c cos ϕ  
= √

b2 − c2 
tan 

c + b cos ϕ 
.
 

2 ∫ ∫ 



∫ 

2 

− 
− 
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13 When the centered square pulse in Example 7 has width h = π, find 

(a) its energy |F (x)|2 dx by direct integration 

(b) its Fourier coefficients ck as specific numbers 

(c) the sum in the energy identity (31) or (24) 

If h = 2π, why is c0 = 1 the only nonzero coefficient ? What is F (x)? 

14 In Example 5, F (x) = 1+(cos x)/2+ · · ·+(cos nx)/2n + · · · is infinitely smooth: 

(a) If you take 10 derivatives, what is the Fourier series of d
10

F/dx
10

? 

(b) Does that series still converge quickly? Compare n
10
 with 2n for n

1024
. 

15 (A touch of complex analysis) The analytic function in Example 5 blows up 
when 4 cos x = 5. This cannot happen for real x, but equation (28) shows 

blowup if eix =  2 or 
1
 . In that case we have poles at x = ±i log 2. Why are 

there also poles at all the complex numbers x = ±i log 2 + 2πn ? 

16 (A second touch)  Change  2’s  to 3’s  so that  equation  (28) has  1/(3  eix) +  

1/(3   e−ix).  Complete that equation to find the function that gives fast decay 
at the rate 1/3k. 

17 (For complex professors only ) Change those 2’s and 3’s to 1’s: 
 

1 1 (1 − e−ix)+ (1 − eix) 
 

   

2 − eix − e−ix 
 

 

1 − eix  
+ 

1 − e−ix  
= 

(1 − eix)(1 − e−ix) 
= 

2 − eix − e−ix  
= 1 .

 

A constant ! What happened to the pole at eix = 1 ? Where is the dangerous 
series (1 + eix + ···  ) + (1 + e−ix + ···  ) = 2 + 2 cos x + ···  involving δ(x)?  

18     Following the Worked Example, solve the heat equation ut = uxx from a point 

source  u(x, 0)  =  δ(x)  with  free  boundary  conditions  u J(π, t)  =  u J(−π, t)  =  0. 
Use the infinite cosine series for δ(x) with time decay factors bn(t). 



∫ 

 
 

 
 
 

 
 

 

 

 

Laplace Transform 

 
The Laplace transform can be used to solve differential equations. Be- 
sides being a different and efficient alternative to variation of parame- 
ters and undetermined coefficients, the Laplace method is particularly 

advantageous for input terms that are piecewise-defined, periodic or im- 
pulsive. 

The direct Laplace transform or the Laplace integral of a function 

f (t) defined for 0 ≤ t < ∞ is the ordinary calculus integration problem 
∞ 

f (t)e−stdt, 
0 

succinctly denoted L(f (t)) in science and engineering literature. The 

L–notation recognizes that integration  always  proceeds over  t = 0 to 

t = ∞ and that the integral involves an integrator e−stdt instead of the 

usual dt. These minor differences distinguish Laplace integrals from 
the ordinary integrals found on the inside covers of calculus texts. 

 

 Introduction to the Laplace Method 

The foundation of Laplace theory is Lerch’s cancellation law 
∞ −st ∞ −st 

 
(1) 

∫
0 y(t)e dt = 

∫
0 f (t)e 

dt implies y(t) = f (t), 
or 

L(y(t) = L(f (t)) implies y(t) = f (t). 

In differential equation applications, y(t) is the sought-after unknown 

while f (t) is an explicit expression taken from integral tables. 

Below, we illustrate Laplace’s method by solving the initial value prob- 

lem 

yJ = −1, y(0) = 0. 

The method obtains a relation L(y(t)) = L(−t), whence Lerch’s cancel- 

lation law implies the solution is y(t) = −t. 

The Laplace method is advertised as a table lookup method,  in which  

the solution y(t) to a differential equation is found by looking up the 
answer in a special integral table. 



.
t=0 

ds 

ds 

∞ 

∫ 

N −st 

∞ J −st 

∞ 

∞ 
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∞ −st 

Laplace Integral. The integral 
∫
0  g(t)e dt is called the Laplace 

integral of the function g(t).  It is defined by limN→∞ 
∫
0  g(t)e dt and 

depends on variable s.  The ideas will be illustrated for g(t) = 1, g(t) = t 
and g(t) = t2, producing the integral formulas in Table 1. 

∞ −st −st t=∞ 
∫
0 (1)e 

dt = −(1/s)e Laplace integral of g(t) = 1. 

 
∞ −st ∞ d −st 

∫
0  (t)e dt = 

∫
0  − ds (e )dt Laplace integral of g(t) = t. 

     

= − ds  

∫
0  (1)e dt Use 

∫ 
ds F (t, s)dt = ds 

∫ 
F (t, s)dt. 

 

= − d (1/s) Use L(1) = 1/s. 

= 1/s2 Differentiate. 
∞   2   −st ∞ d −st 2 

∫
0  (t )e dt = 

∫
0  − ds (te )dt Laplace integral of g(t) = t . 

   

= − ds 

∫
0  (t)e dt 

 

= − d (1/s2) Use L(t) = 1/s2. 

= 2/s3 

 

Table 1. The Laplace integral 
∫
0 g(t)e 

−st dt for g(t) = 1, t and t2. 

 
 

 

∞ −st 1 
 

 

∞ −st 1 
 

 

∞ 2 −st 2 
 

 ∫
0 (1)e dt = 

s 

∫
0  (t)e dt = 

s2 

∫
0 (t )e 

dt = 
s3

 

In summary, L(tn) = 
n!

 
s1+n 

 

 

An  Illustration.   The  ideas  of  the  Laplace  method  will  be  illus- 

trated for the solution y(t) = −t of the problem yJ = −1, y(0) = 0.  The 

method, entirely different from variation of parameters or undetermined 

coefficients, uses basic calculus and college algebra; see Table 2. 

Table 2.   Laplace method details for the illustration y J = −1, y(0) = 0. 
 

yJ(t)e−st = −e−st Multiply yJ = −1 by e−st. 
∞   J −st ∞ −st 

∫
0  y (t)e dt = 

∫
0  −e dt Integrate t = 0 to t = ∞. 

0   y (t)e dt = −1/s Use Table 1. 
∞ −st 

s 
∫
0  y(t)e dt − y(0) = −1/s Integrate by parts on the left. 

∫
0 y(t)e 

dt = −1/s 
 

 

Use y(0) = 0 and divide. 
 

 ∫
0 y(t)e dt = 

∫
0 (−t)e dt Use Table 1. 

 

 

y(t) = −t Apply Lerch’s cancellation law. 

−st ∞ 

−st ∞ d 

d d −st ∞ d 

= 1/s Assumed s > 0. 

−st 2 

−st 



2 
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In Lerch’s law, the formal rule of erasing the integral signs is valid pro- 

vided the integrals are equal for large s and certain conditions hold on y 

and f – see Theorem 2. The illustration in Table 2 shows that Laplace 
theory requires an in-depth study of a special integral table, a table 

which is a true extension of the usual table found on the inside covers 
of calculus books. Some entries for the special integral table appear in 
Table 1 and also in section 7.2, Table 4. 

The L-notation for the direct Laplace transform produces briefer details, 
as witnessed by the translation of Table 2 into Table 3 below. The reader 

is advised to move from Laplace integral notation to the L–notation as 
soon as possible, in order to clarify the ideas of the transform method. 

 

Table  3.     Laplace  method  L-notation  details  for  y J  =  −1,  y(0)  =  0 

translated from Table 2. 
 

L(yJ(t)) = L(−1) Apply L across yJ = −1, or multiply yJ = 

−1 by e−st, integrate t = 0 to t = ∞. 

L(yJ(t)) = −1/s Use Table 1. 

sL(y(t)) − y(0) = −1/s Integrate by parts on the left. 

L(y(t)) = −1/s2 Use y(0) = 0 and divide. 

L(y(t)) = L(−t) Apply Table 1. 

y(t) = −t Invoke Lerch’s cancellation law. 

 

Some Transform Rules. The formal properties of calculus integrals 
plus the integration by parts formula used in Tables 2 and 3 leads to these 

rules for the Laplace transform: 

L(f (t) + g(t)) = L(f (t)) + L(g(t)) The integral of a sum is the 

sum of the integrals. 

L(cf (t)) = cL(f (t)) Constants c pass through the 

integral sign. 

L(yJ(t)) = sL(y(t)) − y(0) The t-derivative rule, or inte- 

gration  by  parts.   See  Theo- 
rem 3. 

L(y(t)) = L(f (t)) implies y(t) = f (t) Lerch’s cancellation law. See 

Theorem 2. 
 

1  Example (Laplace method)  Solve  by  Laplace’s  method  the  initial value 

problem yJ = 5 − 2t, y(0) = 1. 

 
Solution:  Laplace’s method is outlined in Tables 2 and 3.  The L-notation of 
Table 3 will be used to find the solution y(t) = 1 + 5t − t . 



J 

2 

2 

L − L 

∫ 

J 

JJ JJ 

0 N →∞ 

∫
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L(y (t)) = L(5 − 2t) Apply L across y = 5 − 2t. 

J 5 2 
L(y (t)) = 

s 
− 

s2 
Use Table 1. 

5 2 
sL(y(t)) − y(0) =  

s 
− 

s2 
Apply the t-derivative rule, page 248. 

1 5 2 
L(y(t)) =  

s 
+ 

s2 
− 

s3 
Use y(0) = 1 and divide. 

L(y(t))  =  L(1) + 5L(t) − L(t  ) Apply Table 1, backwards. 

= L(1 + 5t − t2) Linearity, page 248. 

y(t) = 1 + 5t − t2 Invoke Lerch’s cancellation law. 

 
2  Example (Laplace method)  Solve  by  Laplace’s  method  the  initial value 

problem yJJ = 10, y(0) = yJ(0) = 0. 

Solution: The L-notation of Table 3 will be used to find the solution y(t) = 5t2. 

L(y  (t)) = L(10) Apply L across y = 10. 

s  (yJ(t)) yJ(0) =    (10) Apply the t-derivative rule to y J, that is, 

replace y by y J on page 248. 

s[sL(y(t)) − y(0)] − y J(0) = L(10) Repeat the t-derivative rule, on y. 

s2L(y(t)) = L(10) Use y(0) = y J(0) = 0. 
10 

L(y(t)) = 
s3 

Use Table 1. Then divide. 

L(y(t))  = L(5t ) Apply Table 1, backwards. 

y(t) = 5t2 Invoke Lerch’s cancellation law. 

 

 
∞  −st 

Existence  of the Transform. The Laplace integral 0 e 
is known to exist in the sense of the improper integral definition1 

f (t) dt 

 
  

g(t)dt = lim 
0 

g(t)dt 

provided f (t) belongs to a class of functions known in the literature as 
functions of exponential order. For this class of functions the relation 

f (t) 
(2) lim 

t→∞ eat 
= 0 

is required to hold for some real number a, or equivalently, for some 

constants M and α, 

(3) |f (t)| ≤ Meαt. 

In addition, f (t) is required to be piecewise continuous on each finite 
subinterval of 0 ≤ t < ∞, a term defined as follows. 

1 An advanced calculus background is assumed for the Laplace transform existence 
proof. Applications of Laplace theory require only a calculus background. 

N ∞ ∫ 



| | ≤ 

. 

∫ 
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Deftnition 1 (piecewise continuous) 
A function f (t) is piecewise continuous on a finite interval [a, b] pro- 

vided there exists a partition a = t0 < · · · < tn = b of the interval [a, b] 
and functions f1, f2, . . . , fn continuous on (−∞, ∞) such that for t not 

a partition point 
 

  
f1(t) t0 <   t   < t1, 

  

(4) f (t) = 
 

. .   
fn(t) tn−1 <   t   <   tn. 

The values of f at partition points are undecided by equation (4). In 
particular, equation (4) implies that f (t) has one-sided limits at each 
point of a < t < b and appropriate one-sided limits at the endpoints. 

Therefore, f has at worst a jump discontinuity at each partition point. 

 
3 Example (Exponential order) Show that f (t) = et cos t + t is of expo- 

nential order, that is, show that f (t) is piecewise continuous and find α > 0 

such that limt→∞ f (t)/eαt = 0. 

 
Solution: Already, f (t) is continuous, hence piecewise continuous. From 
L’Hospital’s  rule  in  calculus,  limt→∞ p(t)/eαt  =  0  for  any  polynomial  p and 
any α > 0. Choose α = 2, then 

 

 

lim 
f (t) 

2t 
= lim 

cos t 
t 
+ lim 

t 
2t 

= 0. 
t→∞ e t→∞ e t→∞ e 

 

 

Theorem 1 (Existence of L(f )) 

Let f (t) be piecewise continuous on every finite interval in t ≥ 0 and satisfy 

|f (t)| ≤ Meαt for some constants M and α. Then L(f (t)) exists for s > α 

and lims→∞ L(f (t)) = 0. 

 
Proof: It has to be shown that the Laplace integral of f is finite for s > α. 
Advanced calculus implies that it is sufficient to show that the integrand is ab- 
solutely bounded above by an integrable function g(t). Take g(t) = Me−(s−α)t. 

Then g(t) ≥ 0. Furthermore, g is integrable, because 
 

M 
g(t)dt = . 

0 s − α 

Inequality f (t) Meαt implies the absolute value of the Laplace transform 
integrand f (t)e−st is estimated by 

 

f (t)e 

 

−st . ≤ Me e−st 
 

= g(t). 

∞ M 
 

 

The limit statement follows from |L(f (t))| ≤ 0 g(t)dt = 
s − α 

, because the 

right side of this inequality has limit zero at s = ∞. The proof is complete. 

. . 

∞ ∫ 

αt 



Σ
18.  f (t)  =  c  sin(nt),  
for  any 

∫ 

− 

∞ ∞ 

≥ 
L 

N 

∞ −st 

2 

tet 
2 

sin(et ). Establish these results. 

n n 

n 

L 
Σ Σ 

L
 

 Introduction to the Laplace Method 251 
 

 

Theorem 2 (Lerch)  
∞ −st 

If f1(t) and f2(t) are continuous, of exponential order and 
∫
0 f1(t)e 

dt = 
∫
0   f2(t)e dt for all s > s0, then f1(t) = f2(t) for t ≥ 0. 

Proof: See Widder [?]. 

Theorem 3 (t-Derivative Rule) 
If f (t)  is continuous,  lim f (t)e−st  =  0  for all large values of s and f J(t) 

t→∞ 

is piecewise continuous, then L(f J(t)) exists for all large s and L(f J(t)) = 

sL(f (t)) − f (0). 
 

Proof: See page 276. 

Exercises 7.1 

Laplace method. Solve the given 
initial  value  problem  using  Laplace’s 
method. 

1.  yJ = −2, y(0) = 0. 

 

N 
n=1 n 

choice of the constants c1, . . . , cN . 

Existence of transforms. Let f (t) = 

2.  yJ = 1, y(0) = 0. 

3.  yJ = −t, y(0) = 0. 

4.  yJ = t, y(0) = 0. 

 

19. The function f (t) is not of expo- 
nential order. 

20. The Laplace integral of f (t), 

5.  yJ = 1 − t, y(0) = 0. 

∞ 

0 f (t)e 

s > 0. 

−st dt, converges for all 

6.  yJ = 1 + t, y(0) = 0. 

7.  yJ = 3 − 2t, y(0) = 0. 

Jump Magnitude. For f piecewise 
continuous, define the jump at t by 

8.  yJ = 3 + 2t, y(0) = 0. J (t) = lim 
h→0+ 

f (t + h) lim 
h→0+ 

f (t − h). 

9.  yJJ = −2, y(0) = yJ(0) = 0. 

10.  yJJ = 1, y(0) = yJ(0) = 0. 

11.  yJJ = 1 − t, y(0) = y J(0) = 0. 

Compute J (t) for the following f . 

21. f (t) = 1 for t ≥ 0, else f (t) = 0 

22. f (t) = 1 for t ≥ 1/2, else f (t) = 0 

12.  yJJ = 1 + t, y(0) = yJ(0) = 0. 23. f (t) = t/|t| for t 0, f (0) = 0 

13.  yJJ = 3 − 2t, y(0) = yJ(0) = 0. 

14.  yJJ = 3 + 2t, y(0) = y J(0) = 0. 

Exponential order. Show that f (t) 
is of exponential order, by finding a 
constant α 0 in each case such that 

f (t) 

24. f (t) = sin t/| sin t| for t ƒ=  nπ, 
f (nπ) = (−1) 

Taylor series.  The  series  relation 
( n=0 cnt ) =  n=0 cn  (t  )  often 
holds, in which case the result (tn) = 
n!s−1−n can be employed to find a 

lim 
t→∞ e αt 

= 0. series   representation   of   the Laplace 
transform. Use  this  idea  on the  fol- 

15. f (t) = 1 + t 

16. f (t) = et sin(t) 

lowing to find a series formula for 

L(f (t)). 
2t ∞ n 

n 

17. f (t) = 
Σ

n=0 cnx , for any choice 
25. f (t) = e 

= 
Σ

n=0(2t) /n! 
of the constants c , . . . , c . −t ∞ n 

0 N 26. f (t) = e = 
Σ

n=0(−t) /n! 



. 
≥

 

− 

∞ −x 

∫ 

∫ ∞ 
0 

(t )e dt = 
s1+n 

n −st n! 
L (t ) = n 

s 

n! 
1+n 

∞ at −st 1 at 1 
0 

∫
0  (sin bt)e dt = 

s2 + b2
 

∫ ∞ 

(e  )e dt = 
s − a 

L(e 

s 

) = 
s − a 

s 
0 

(cos bt)e dt = 
s2 + b2 

−st 

∞ −st b 

L(cos bt) = 
s2 + b2

 

L(sin bt) = 
s2 + b2

 
b 
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 Laplace Integral Table 

The objective in developing a table of Laplace integrals, e.g., Tables 4 
and 5, is to keep the table size small. Table manipulation rules appear- 
ing in Table 6, page 257, effectively increase the table size manyfold, 
making it possible to solve typical differential equations from electrical 
and mechanical problems. The combination of Laplace tables plus the 

table manipulation rules is called the Laplace transform calculus. 

Table 4 is considered to be a table of minimum size to be memorized. 

Table 5 adds a number of special-use entries. For instance, the Heaviside 

entry in Table 5 is memorized, but usually not the others. 

Derivations are postponed to page 270. The theory of the gamma func- 
tion Γ(x) appears below on page 255. 

Table 4. A minimal Laplace integral table with L-notation 
 

Table 5. Laplace integral table extension 
 

L(H(t − a)) = 
e−as 

s 
(a ≥ 0) Heaviside unit step, defined by 

H(t) = 
1 for  t 0, 

0 otherwise. 
L(δ(t − a)) = e −as  

 

e−as 

Dirac delta, δ(t) = dH(t). 
Special usage rules apply. 

L(floor(t/a)) = 
s(1 e−as) 

Staircase function, 

floor(x) = greatest integer ≤ x. 
1 

L(sqw(t/a)) = 
s 

tanh(as/2) Square wave, 

sqw(x) = (−1) 

 
floor(x). 

L(a trw(t/a)) = 
1 
2 

tanh(as/2) Triangular wave, 
 

 s 

α Γ(1 + α) 
 

 

trw(x) = 
∫
0 sqw(r)dr. 

L(t ) = 
1+α 

Generalized power function, 
 

Γ(1 + α) = 
∫
0  e x dx. 

 

 

 
 

L(t−1/2) = 

. 
π

 
Because Γ(1/2) = 

√
π. 

α 

x 

s 

s 



2 

2 

2 

. 
≤
− − − 

2 3t 
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4 Example (Laplace transform) Let f (t) = t(t − 1) −sin 2t + e3t. Compute 

L(f (t)) using the basic Laplace table and transform linearity properties. 
 

Solution: 

L(f (t)) = L(t  − 5t − sin 2t + e  ) Expand t(t − 5). 

=  L(t2) − 5L(t) − L(sin 2t) + L(e3t) Linearity applied. 
2 5 2 1 

= 
s3 

− 
s2 

− 
s2 + 4 

+ 
s − 3 

Table lookup. 

 
5 Example (Inverse Laplace transform) Use the basic Laplace table back- 

wards plus transform linearity properties to solve for f (t) in the equation 
 

s 2 s + 1 
L(f (t)) = 

s2 + 16 
+ 

s − 3 
+ 

s3 
. 

 

Solution: 

s 

 

1 1 1 2 
L(f (t)) = 

s2 + 16 
+ 2 

s − 3 
+ 

s2 
+ 

2 s3 
Convert to table entries. 

=  L(cos 4t) + 2L(e3t) + L(t) + 1 L(t2) Laplace table (backwards). 

= L(cos 4t + 2e3t + t + 1 t2) Linearity applied. 

f (t) = cos 4t + 2e3t + t + 1 t2 Lerch’s cancellation law. 

 

 
6 Example (Heaviside) Find the Laplace transform of f (t) in Figure 1. 

5 

 
 

1 

1 3 5 

Figure 1. A piecewise deftned 
function f (t) on 0 ≤ t < ∞: f (t) = 0 
except for 1 ≤ t < 2 and 3 ≤ t < 4. 

 

Solution: The details require the use of the Heaviside function formula 

H(t a) H(t b) = 
1   a t < b,

 
0   otherwise. 

 

The formula for f (t): 

  1 1 ≤ t < 2, 

 

. 
1 1 ≤ t < 2, 

. 
1 3 ≤ t < 4, 

f (t) =  5 3 t < 4, = 
0 otherwise 

0 otherwise 
+ 5

 0 otherwise 

Then f (t) = f1(t) + 5f2(t) where f1(t) = H(t − 1) − H(t − 2) and f2(t) = 

H(t − 3) − H(t − 4). The extended table gives 

L(f (t)) = L(f1(t)) + 5L(f2(t)) Linearity. 

= L(H(t − 1)) − L(H(t − 2)) + 5L(f2(t)) Substitute for f1. 

≤ 



− 

− − 

N 

Σ 

n=1 

s 

. 

. 
≤

 

N −ns 

N 
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e−s e−2s 

= 
s 

+ 5L(f2(t)) Extended table used. 

e−s e−2s + 5e−3s 5e−4s 

= 
s 

Similarly for f2. 

 
7 Example (Dirac delta) A machine shop tool that repeatedly hammers a 

die is modeled by the Dirac impulse model f (t) = 
Σ

n=1 δ(t − n). Show 

that L(f (t)) = n=1 e . 

Solution: 

L(f (t)) = L 
.ΣN 

δ(t − n)
Σ

 

= 
Σ

n=1 L(δ(t − n)) Linearity. 
 

= 
Σ

n=1 e 

−ns Extended Laplace table. 

 

8 Example (Square wave) A periodic camshaft force f (t) applied to a me- 
chanical system has the idealized graph shown in Figure 2.   Show that   

f (t) = 1 + sqw(t) and L(f (t)) = 1 (1 + tanh(s/2)). 
 

2 
 

 
Figure 2. A periodic force f (t) applied 

0 
1 3 to a mechanical system. 

Solution: 

1 + sqw(t) = 
1 + 1 2n ≤ t < 2n + 1, n = 0, 1, . . ., 

1 − 1 2n + 1 ≤ t < 2n + 2,  n = 0, 1, . . ., 

= 
2 2n t < 2n + 1,  n = 0, 1, . . ., 

0 otherwise, 
= f (t). 

1 
By the extended Laplace table, L(f (t)) = L(1) + L(sqw(t)) = 

s 
+ 

tanh(s/2) 
. 

s 
 

9 Example (Sawtooth wave) Express the P -periodic sawtooth wave repre- 

sented in Figure 3 as f (t) = ct/P − c floor(t/P ) and obtain the formula 

c ce−Ps 

L(f (t)) = 
Ps2 

− 
s − se−Ps 

. 

 

c 
 

 

0 
P 4P 

Figure 3. A P -periodic sawtooth 
wave f (t) of height c > 0. 

N 



≤ 
≤ 

− 

t/π ∫ 

∫ ∫ 
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Solution: The representation originates from geometry, because the periodic 
function f can be viewed as derived from ct/P by subtracting the correct con- 
stant from each of intervals [P, 2P ], [2P, 3P ], etc. 

The technique used to verify the identity is to define g(t) = ct/P c floor(t/P ) 
and then show that g is P -periodic and f (t) = g(t) on 0 t < P . Two P - 
periodic functions equal on the base interval 0  t < P  have to  be  identical, 
hence the representation follows. 

The fine details: for 0 ≤ t < P , floor(t/P ) = 0 and floor(t/P + k) = k. Hence 
g(t + kP ) = ct/P + ck − c floor(k) = ct/P = g(t),  which implies that g is 
P -periodic and g(t) = f (t) for 0 ≤ t < P . 

c 
L(f (t)) = 

P 
L(t) − cL(floor(t/P )) Linearity. 

c ce−Ps 

= 
Ps2 

− 
s − se−Ps 

Basic and extended table applied. 

10 Example (Triangular wave) Express the triangular wave f of Figure 4 in 
5 

terms of the square wave sqw and obtain L(f (t)) = tanh(πs/2). 
πs2 

5 
 
 

 
0 Figure 4. A 2π-periodic triangular 

2π wave f (t) of height 5. 
 

Solution: The representation of f in terms of sqw is f (t) = 5 0 sqw(x)dx. 

Details: A 2-periodic triangular wave of height 1 is obtained by integrating  
the square wave of period 2. A wave of height c and period 2 is given by 

t 2t/P 
c trw(t) = c 0 sqw(x)dx.  Then f (t) = c trw(2t/P ) = c 0 sqw(x)dx where 

c = 5 and P = 2π. 

Laplace transform details: Use the extended Laplace table as follows. 

5 5 
L(f (t)) = 

π 
L(π trw(t/π)) = 

πs2 
tanh(πs/2). 

 
Gamma Function. In mathematical physics, the Gamma func- 
tion or the generalized factorial function is given by the identity 

∞ 

(1) Γ(x) = 
0 

e−ttx−1 dt, x > 0. 

This function is tabulated and available in computer languages like For- 
tran, C and C++. It is also available in computer algebra systems and 

numerical laboratories. Some useful properties of Γ(x): 
 

(2) Γ(1 + x) = xΓ(x) 

(3) Γ(1 + n)    =    n! for integers n ≥ 1. 

∫ 



∞ 

∞ 

∫ 

∫ 

L 

Σ 

Σ 

10 

x −t t=∞ −t 

n=0 t 

18. L( n=0 t 

−t 

− 
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Details  for  relations (2) and (3): Start with 
∫
0   e   dt = 1,  which gives 

Γ(1) = 1. Use this identity and successively relation (2) to obtain relation (3). 
To prove identity (2), integration by parts is applied, as follows: 

−t x 

Γ(1 + x) = 
∫
0   e t dt Definition. 

= t e 
∞ 

|t=0 + 0 e xt 
−t x−1 

dt Use u = t , dv = e dt. 

= x 0 e t 

= xΓ(x). 

dt Boundary terms are zero 

for x > 0. 

 
 

Exercises 7.2 

Laplace transform. Compute 
(f (t)) using the basic Laplace table 
and the linearity properties of the 
transform. Do not use the direct 
Laplace transform! 

1. L(2t) 

2. L(4t) 

3. L(1 + 2t + t2) 

4. L(t2 − 3t + 10) 

5. L(sin 2t) 

6. L(cos 2t) 

7. L(e2t) 
−2t 

 

 
Inverse Laplace transform. Solve 
the  given  equation   for   the   function 
f (t). Use the basic table and linearity 
properties of the Laplace transform. 

21. L(f (t)) = s−2 

22. L(f (t)) = 4s−2 

23. L(f (t)) = 1/s + 2/s2 + 3/s3 

24. L(f (t)) = 1/s3 + 1/s 

25. L(f (t)) = 2/(s2 + 4) 

26. L(f (t)) = s/(s2 + 4) 

27. L(f (t)) = 1/(s − 3) 

28. L(f (t)) = 1/(s + 3) 
8. L(e ) 

29. L(f (t)) = 1/s + s/(s2 + 4) 
9. L(t + sin 2t) 

10. L(t − cos 2t) 

11. L(t + e2t) 

12. L(t − 3e−2t) 

13. L((t + 1)2) 

14. L((t + 2)2) 

15. L(t(t + 1)) 

16. L((t + 1)(t + 2)) 

30. L(f (t)) = 2/s − 2/(s2 + 4) 

31. L(f (t)) = 1/s + 1/(s − 3) 

32. L(f (t)) = 1/s − 3/(s − 2) 

33. L(f (t)) = (2 + s)2/s3 

34. L(f (t)) = (s + 1)/s2 

35. L(f (t)) = s(1/s2 + 2/s3) 

36. L(f (t)) = (s + 1)(s − 1)/s3 
10 1+n 

10 n 37. L(f (t)) = 
Σ

n=0 n!/s 
  

10 n+1 38. L(f (t)) = 
Σ

n=0 n!/s 
  

 

19. L(
Σ

n=1 sin nt) 39. L(f (t)) = 
Σ

n=1 s2 + n2
 

 

10 10 s 20. L(
Σ

n=0 cos nt) 40. L(f (t)) = 
Σ

n=0 s2 + n2
 

n 10 

2+n 10 

∞ x−1 x −t 

17. L( /n!) 

/n!) 



J 

L r 

.∫  Σ
L 

 g(x)dx = 

L | 

L − − 

P 

t 

JJ 

1 − e−Ps 
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7.3 Laplace Transform Rules 
 

In Table 6, the basic table manipulation rules are summarized. Full 

statements and proofs of the rules appear in section 7.7, page 275. 

The rules are applied here to several key examples. Partial fraction 

expansions do not appear here, but in section 7.4, in connection with 

Heaviside’s coverup method. 
 

Table 6. Laplace transform rules 
 

L(f (t) + g(t)) = L(f (t)) + L(g(t)) Linearity. 
The Laplace of a sum is the sum of the Laplaces. 

L(cf (t)) = cL(f (t)) Linearity. 
Constants move through the L-symbol. 

L(y (t)) = sL(y(t)) − y(0) The t-derivative rule. 
Derivatives (y ) are replaced in transformed equations. 

t 1 

0 s 
L(g(t)) The t-integral rule. 

d 
L(tf (t)) = − 

ds 
L(f (t)) The s-differentiation rule. 

Multiplying f by t applies −d/ds to the transform of f . 

L(e f (t)) = (f (t)) s→(s−a) First shifting rule. 

Multiplying f by eat 
replaces s by s − a. 

(f (t a)H(t a)) = e 
−as 

−as L(f (t)), Second shifting rule. 

L(g(t)H(t − a)) = e L(g(t + a)) First and second forms. 

L(f (t)) = 

∫
0 

f (t)e
 

−stdt 
Rule for P -periodic functions. 

 

 

L(f (t))L(g(t)) = L((f ∗ g)(t)) Convolution rule. 

Define (f ∗ g)(t) = 
∫

0  
f (x)g(t − x)dx. 

11 Example (Harmonic oscillator) Solve by Laplace’s method the initial value 

problem xJJ + x = 0, x(0) = 0, xJ(0) = 1. 

Solution: The solution is x(t) = sin t. The details: 

L(x  ) + L(x) = L(0) Apply L across the equation. 

sL(xJ) − xJ(0) + L(x) = 0 Use the t-derivative rule. 

s[sL(x) − x(0)] − xJ(0) + L(x) = 0 Use again the t-derivative rule. 

(s2 + 1)L(x) = 1 Use x(0) = 0, xJ(0) = 1. 

1 
L(x) =  

s2 + 1 
Divide. 

= L(sin t) Basic Laplace table. 

x(t) = sin t Invoke Lerch’s cancellation law. 

Assumed here is f (t + P ) = f (t). 

at 



. 

2 
.
s→s−(−3) . 

. 
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12 Example  (s-differentiation rule)  Show the steps for L(t2 e5t) = 
2 

. 
(s − 5)3 

 

Solution: 

L(t2e5t) = 

.

− 
d 

Σ .

− 
d 

Σ 

L(e5t) Apply s-differentiation. 
ds ds 

= (−1)2 
d   d  

. 
1   

Σ 

Basic Laplace table. 
ds ds 

= 
d −1 

ds (s − 5)2 

2 

s − 5 
Σ 

Calculus power rule. 

= 
(s − 5)3 

Identity verified. 

 
13 Example (First shifting rule) Show the steps for L(t2 e−3t) = 

2 
. 

(s + 3)3 
 

Solution: 

L(t e 

 

−3t ) = L(t2) First shifting rule. 

= 
2 

s2+1 

2 

Σ 

.
s→s−(−3) 

 

Basic Laplace table. 

=  
(s + 3)3 

Identity verified. 

 
14 Example (Second shifting rule) Show the steps for 

e−πs 

L(sin t H(t − π)) =  . 
s2 + 1 

Solution: The second shifting rule is applied as follows. 

L(sin t H(t − π)) = L(g(t)H(t − a) Choose g(t) = sin t, a = π. 

= e−asL(g(t + a) Second form, second shifting theorem. 

= e−πsL(sin(t + π)) Substitute a = π. 

= e−πsL(− sin t) Sum rule sin(a + b) = sin a cos b + 

sin b cos a plus sin π = 0, cos π = −1. 

= e−πs −1 
s2 + 1 

Basic Laplace table. Identity verified. 

 

15 Example (Trigonometric formulas) Show the steps used to obtain these 

Laplace identities: 

s2 − a2 
2
 

(a) L(t cos at) = 
(s2 + a2)2 

(c) L(t 

2sa 2 
 

 

cos at) = 
2(s3 − 3sa2) 

(s2 + a2)3 

6s2a − a3 
 

 

(b) L(t sin at) = 
(s2 + a2)2 

(d) L(t sin at) = 
(s2 + a2)3

 



. 

− 

− 

. 
. 

.

−

 
. 

. 

ds (s2 + a2)2 

2 

2 

at 

. 
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Solution: The details for (a): 

L(t cos at) = −(d/ds)L(cos at) Use s-differentiation. 

d 
= − 

ds
 

s 
 

 

s2 + a2 

Σ 

Basic Laplace table. 

s2 a2 

= 
(s2 + a2)2 

Calculus quotient rule. 

The details for (c): 

L(t cos at) = −(d/ds)L((−t) cos at) Use s-differentiation. 

=  
d  
.

−  
s  − a 

Σ 

Result of (a). 

2s3 6sa2) 
=  

(s2 + a2)3 
Calculus quotient rule. 

 

The similar details for (b) and (d) are left as exercises. 

 
16 Example (Exponentials) Show the steps used to obtain these Laplace 

identities: 

at s − a 
 

 

at (s − a)2 − b2 
 

 (a) L(e cos bt) = 
(s − a)2 + b2 

(c) L(te cos bt) = 
((s − a)2 + b2)2 

(b) L(eat sin bt) = 
b
 

(s − a)2 + b2 

(d) L(teat sin bt) = 
2b(s − a)

 
((s − a)2 + b2)2 

 

Solution: Details for (a): 
at 

L(e   cos bt) = L(cos bt)|s→s−a First shifting rule. 

= 
s 

s2 + b2 

= 
s − a 

Σ 

.
s→s−a 

Basic Laplace table. 

 
Verified (a). 

 

Details for (c): 

(s − a)2 + b2 

 

L(te   cos bt) = L(t cos bt)|s→s−a First shifting rule. 

= 
d 

(cos bt)

Σ
.
 

 
 

Apply s-differentiation. 
− 

ds 
L 

 
  

.
s→s−a 

d s 
= 

ds s2 + b2 
2 2 

 
 

ΣΣ 
.
s→s−a 

Basic Laplace table. 

= 

. 
s  − b 

Σ
. Calculus quotient rule. 

(s2 + b2)2 
 

 

.
s→s−a 

(s a)2 b2 = 
((s − a)2 + b2)2 

Verified (c). 

Left as exercises are (b) and (d). 

− − 

2 



1 

− 

. 
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17 Example (Hyperbolic functions) Establish these Laplace transform facts 

about cosh u = (eu + e−u)/2 and sinh u = (eu − e−u)/2. 

s s2 + a2 
(a) L(cosh at) = 

s2 − a2 
(c) L(t cosh at) = 

(s2 − a2)2
 

a 2as 
(b) L(sinh at) = 

s2 − a2 
(d) L(t sinh at) = 

(s2 − a2)2
 

Solution: The details for (a): 

L(cosh at) = 2 (L(e ) + L(e −at )) Definition plus linearity of L. 

= 
1 
. 

1 + 
1   

Σ 

Basic Laplace table. 

2 s a s + a 
s 

= 
s2 − a2 

Identity (a) verified. 

The details for (d): 

d 
L(t sinh at) = − 

ds
 

a 
 

 

s2 − a2 

Σ 

Apply the s-differentiation rule. 

a(2s) 
= 

(s2 − a2)2 
Calculus power rule; (d) verified. 

Left as exercises are (b) and (c). 
 

2s 
18 Example (s-differentiation) Solve L(f (t)) = 

(s2 + 1)2 
for f (t). 

Solution: The solution is f (t) = t sin t. The details: 

2s 
L(f (t)) = 

(s2 + 1)2
 

d 
= − 

ds
 

d 

1 
 

s2 + 1 

Σ 

Calculus power rule (un)J = nun−1uJ. 

= − 
ds 

(L(sin t)) Basic Laplace table. 

= L(t sin t) Apply the s-differentiation rule. 

f (t) = t sin t Lerch’s cancellation law. 

 
 

s + 2 
19 Example (First shift rule) Solve L(f (t)) = 

22 + 2s + 2 
for f (t). 

Solution: The answer is f (t) = e−t cos t + e−t sin t. The details: 

s + 2 
(f (t)) = 

s2 + 2s + 2 
Signal for this method: the denom- 

inator has complex roots. 
s + 2 

= 
(s + 1)2 + 1 

Complete the square, denominator. 

. 

L 

at 



JJ 

. Σ
ω coth 

P 

−st 
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S + 1 
=  

S2 + 1 
Substitute S for s + 1. 

S 1 
=  

S2 + 1 
+ 

S2 + 1 
Split into Laplace table entries. 

= L(cos t) + L(sin t)|s→S=s+1 Basic Laplace table. 

= L(e−t cos t) + L(e−t sin t) First shift rule. 

f (t) = e−t cos t + e−t sin t Invoke Lerch’s cancellation law. 

 
 

20 Example (Damped oscillator) Solve by Laplace’s method the initial value 

problem xJJ + 2xJ + 2x = 0, x(0) = 1, xJ(0) = −1. 

Solution: The solution is x(t) = e−t cos t. The details: 
J 

L(x  ) + 2L(x ) + 2L(x) = L(0) Apply L across the equation. 

sL(xJ) − xJ(0) + 2L(xJ) + 2L(x) = 0 The t-derivative rule on xJ. 

s[sL(x) − x(0)] − xJ(0) 

+2[L(x) − x(0)] + 2L(x) = 0 

The t-derivative rule on x. 

(s2 + 2s + 2)L(x) = 1 + s Use x(0) = 1, xJ(0) = −1. 
s + 1 

L(x) =  
s2 + 2s + 2 

Divide. 

s + 1 
= 

(s + 1)2 + 1 
Complete the square in the de- 
nominator. 

= L(cos t)|s→s+1 Basic Laplace table. 

= L(e−t cos t) First shifting rule. 

x(t) = e−t cos t Invoke Lerch’s cancellation law. 

 
21 Example (Rectified sine wave) Compute the Laplace transform of the 

rectified sine wave f (t) = | sin ωt| and show it can be expressed in the 

form 
πs 

 

L(| sin ωt|) =  2ω . 
s2 + ω2 

Solution: The periodic function formula will be applied with period P = 
−st 

2π/ω. The calculation reduces to the evaluation of J = 
∫
0 f (t)e dt. Because 

sin ωt ≤ 0 on π/ω ≤ t ≤ 2π/ω, integral J can be written as J = J1 + J2, where 
 

J1 = 
0 

 

π/ω 

sin ωt e−stdt, J2 = 

∫

 

 

2π/ω 

π/ω 

− sin ωt e dt. 

Integral tables give the result 
∫ 

sin ωt e−st dt = − 

Then 

 
ωe−st cos(ωt) 

s2 + ω2 
−

 

 

se−st sin(ωt) 

s2 + ω2 
.
 

J1 = 
ω(e−π∗s/ω + 1) 

s2 + ω2 
, J2 = 

ω(e−2πs/ω + e−πs/ω ) 

s2 + ω2 
,
 

∫ 



L 

− − 

. Σ 

| | 

2ω 
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ω(e−πs/ω + 1)2 

J = 
s2 + ω2 

. 

The remaining challenge is to write the  answer for (f (t)) in terms of coth. 
The details: 

J 
L(f (t)) = 

1 − e−Ps 
Periodic function formula. 

J 
= 

(1 − e−Ps/2)(1 + e−Ps/2) 

ω(1 + e−Ps/2) 
 

 

Apply 1 x2 = (1 x)(1 + x), 
x = e−Ps/2. 

−Ps/2 

= 
(1 − e−Ps/2)(s2 + ω2) 

Cancel factor 1 + e . 

ePs/4 + e−Ps/4 ω  −Ps/4 

= 
ePs/4 − e−Ps/4 s2 + ω2 

Factor out e 
, then cancel. 

2 cosh(Ps/4) ω 
= 

2 sinh(P s/4) s2 + ω2 
Apply cosh, sinh identities. 

ω coth(Ps/4) 
= 

s2 + ω2 
Use coth u = cosh u/ sinh u. 

πs 

= 
ω coth 2ω 

s2 + ω2 

Identity verified. 

 

22 Example (Half–wave rectification) Compute the Laplace transform of the 

half–wave rectification of sin ωt, denoted g(t), in which the negative cycles 

of sin ωt have been canceled to create g(t). Show in particular that 
 

1 ω 
L(g(t)) = 

.

1 + coth 

. 
πs 

ΣΣ

 

 

Solution:  The half–wave rectification of sin ωt is g(t) = (sin ωt +   sin ωt )/2. 
Therefore, the basic Laplace table plus the result of Example 21 give 

L(2g(t)) = L(sin ωt) + L(| sin ωt|) 
ω 

= 
s2 + ω2 

+
 

ω 

ω cosh(πs/(2ω)) 

s2 + ω2 

= 
s2 + ω2 

(1 + cosh(πs/(2ω)) 

Dividing by 2 produces the identity. 

 

23 Example (Shifting rules) Solve L(f (t)) = e−3s 
s + 1

 
s2 + 2s + 2 

 
 
 
 

for f (t). 
 

Solution: The answer is f (t) = e3−t cos(t − 3)H(t − 3). The details: 

−3s s + 1 

L(f (t)) = e 
(s + 1)2 + 1 

Complete the square. 

= e−3s S 
S2 + 1 

 

Replace s + 1 by S. 

= e−3S+3 (L(cos t))|s→S=s+1 Basic Laplace table. 

2 s2 + ω2 



2 

.
s→S=s+2 

. 

2 

2 

.
e
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= e3 −3s 
L(cos t)

Σ
.
s→S=s+1 

Regroup factor e 
−3S . 

= e3 (L(cos(t − 3)H(t − 3)))|s→S=s+1 Second shifting rule. 

= e3L(e−t cos(t − 3)H(t − 3)) First shifting rule. 

f (t) = e3−t cos(t − 3)H(t − 3) Lerch’s cancellation law. 

 
 

s + 7 
24 Example () Solve L(f (t) = 

s2 + 4s + 8 
for f (t). 

Solution: The answer is f (t) = e−2t(cos 2t + 5 sin 2t). The details: 

s + 7 
L(f (t)) = 

(s + 2)2 + 4 
Complete the square. 

S + 5 
=  

S2 + 4 
Replace s + 2 by S. 

S 5 2 
=  

S2 + 4 
+ 

2 S2 + 4 
Split into table entries. 

s 5 2 
= + 

.
 

 
 

Prepare for shifting rule. 

s2 + 4 2 s2 + 4 
5 =  L(cos 2t) + 2 L(sin 2t) 

s→S=s+2 
Basic Laplace table. 

= L(e−2t(cos 2t + 5 sin 2t)) First shifting rule. 

f (t) = e−2t(cos 2t + 5 sin 2t) Lerch’s cancellation law. 
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 Heaviside’s Method 

This practical method was popularized by the English electrical engineer 
Oliver Heaviside (1850–1925). A typical application of the method is to 

solve 
2s 

(s + 1)(s2 + 1) 
= L(f (t))

 

for the t-expression f (t) = −e−t + cos t + sin t. The details in Heaviside’s 

method involve a sequence of easy-to-learn college algebra steps. 

More precisely, Heaviside’s method systematically converts a polyno- 
mial quotient 

a0 + a1s + · · · + ansn 
(1) 

b0 + b1s + · · · + bmsm 

into the form L(f (t)) for some  expression  f (t).  It is  assumed  that 
a0, .., an, b0, . . . , bm are constants and the polynomial quotient (1) has 

limit zero at s = ∞. 
 

Partial Fraction Theory 

In college algebra, it is shown that a rational function (1) can be ex- 

pressed as the sum of terms of the form 
 

 

(2) 
A 

(s − s0)k 
 

where A is a real or complex constant and (s − s0)k divides the denomi- 

nator in (1). In particular, s0 is a root of the denominator in (1). 

Assume fraction (1) has real coefficients. If s0 in (2) is real, then A is 

real. If s0 = α + iβ in (2) is complex, then (s − s0)k also appears, where 

s0 = α − iβ is the complex conjugate of s0. The corresponding terms 

in (2) turn out to be complex conjugates of one another, which can be 

combined in terms of real numbers B and C as 
 

A A B + C s 
(3) + = . (s − s )k (s − s )k ((s − α)2 + β2)k 

0 0 

 

Simple Roots. Assume that (1) has real coefficients and the denomi- 
nator of the fraction (1) has distinct real roots s1, . . . , sN and distinct 
complex roots α1 + iβ1, . . . , αM + iβM . The partial fraction expansion 

of (1) is a sum given in terms of real constants Ap, Bq, Cq by 
 

a0 + a1s + · · · + ansn N Ap 
M 

Bq + Cq(s − αq) 
(4) 

b + b s + · · · + b sm 
= 
Σ 

s − s 
+ 
Σ 

(s − α )2 + β2 
.
 

p 



s+1 

A (s + 1) B (s + 1) C (s + 1) 

(s + 1) 

2 

p=1 1≤k≤Np 
p q=1 1≤k≤Mq 

q q 
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Multiple Roots. Assume (1) has real coefficients and the  denomi- 
nator of the fraction (1) has possibly multiple roots. Let Np be the 
multiplicity of real root sp and let Mq be the multiplicity of complex root 
αq + iβq, 1 ≤ p ≤ N , 1 ≤ q ≤ M . The partial fraction  expansion of (1) 

is given in terms of real constants Ap,k, Bq,k, Cq,k by 
N Ap,k 

M
 Bq,k + Cq,k(s − αq) 

(5) Σ Σ 

(s − s )k 
+ 
Σ Σ

 
((s − α )2 + β2)k 

.
 

 

Heaviside’s Coverup Method 

The method applies only to the case of distinct roots of the denominator 

in (1). Extensions to multiple-root cases can be made; see page 266. 

To illustrate Oliver Heaviside’s ideas, consider the problem details 
 

(6) 
2s + 1 

= 
s(s − 1)(s + 1) 

A B 
+ 

s s − 1 

C 
+ 

s + 1 

= L(A) + L(Bet) + L(Ce−t) 

= L(A + Bet + Ce−t) 

 
The first line (6) uses college algebra partial fractions. The second and 

third lines use the Laplace integral table and properties of L. 

 
Heaviside’s mysterious method. Oliver Heaviside proposed to 

find in (6) the constant C = 1 by a cover–up method: 

2s + 1 C 
= . 

. 
=0 

 

The instructions are to cover–up the matching factors (s + 1) on the left 

and right with box  , then evaluate on the left at the root s which 
makes the contents of the box zero. The other terms on the right are 

replaced by zero. 

To justify Heaviside’s cover–up method, multiply (6) by the denominator 

s + 1 of partial fraction C/(s + 1): 

 
= + + . 

s s − 1 
 

Set (s + 1) = 0 in the display. Cancellations left and right plus annihi- 

lation of two terms on the right gives Heaviside’s prescription 

2s + 1 

s(s − 1).
s+1=0 

= C. 

s(s − 1) 

(2s + 1) (s + 1) 

s(s − 1) (s + 1) 
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The factor (s + 1) in (6) is by no means special: the same procedure 

applies to find A and B. The method works for denominators with 
simple roots, that is, no repeated roots are allowed. 

 
Extension to Multiple Roots. An extension of Heaviside’s method 
is possible for the case of repeated roots. The basic idea is to factor–out 
the repeats. To illustrate, consider the partial fraction expansion details 

1 
R = A sample rational function having 

(s + 1)2(s + 2) 
repeated roots. 

1 
= 

s + 1 

1 
 

 

(s + 1)(s + 2) 

Σ 

Factor–out the repeats. 

1 
= 

s + 1 

1 

1 
 

 

s + 1 

−1 
+ 

s + 2 

−1 

Apply the cover–up method to the 

simple root fraction. 

= 
(s + 1)2 

+ 
(s + 1)(s + 2) 

Multiply.
 

1 −1 1 
=  

(s + 1)2  
+ 

s + 1  
+ 

s + 2 
Apply the cover–up method to the 

last fraction on the right. 

Terms with only one root in the denominator are already partial frac- 

tions. Thus the work centers on expansion of quotients in which the 

denominator has two or more roots. 

 
Special Methods. Heaviside’s method has a useful extension for the 

case of roots of multiplicity two. To illustrate, consider these details: 

1 
R = A fraction with multiple roots. 

(s + 1)2(s + 2) 
A B C 

=  
s + 1 

+ 
(s + 1)2  

+ 
s + 2 

See equation (5). 

A 1 1 
=  

s + 1 
+ 

(s + 1)2  
+ 

s + 2 
Find B and C by Heaviside’s cover– 

up method. 
−1 1 1 

= 
s + 1 

+ 
(s + 1)2 

+ 
s + 2 

Multiply by s+1. Set s = ∞. Then 

0 = A + 1. 

The illustration works for one root of multiplicity two, because s = ∞ 

will resolve the coefficient not found by the cover–up method. 

In general, if the denominator in (1) has a root s0 of multiplicity k, then 
the partial fraction expansion contains terms 

A1 

s − s0 
+ 

A2 

(s − s0)2 

+ · · · + 
Ak 

. 
(s − s0)k 

Heaviside’s cover–up method directly finds Ak, but not A1 to Ak−1. 

. 

. Σ 



. 

. 

Σ 
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7.5 Heaviside Step and Dirac Delta 

Heaviside Function. The unit step function or Heaviside func- 
tion is defined by 

 

H(x) = 
1 for x ≥ 0, 

0 for x < 0. 
 

The most often–used formula involving the Heaviside function is the 

characteristic function of the interval a ≤ t < b, given by 
 

(1) H(t − a) − H(t − b) = 
1 a ≤ t < b,

 
0 t < a, t ≥ b. 

 

To illustrate, a square wave sqw(t) = (−1)floor(t) can be written in the 

series form 
∞ n 

(−1) 
n=0 

(H(t − n) − H(t − n − 1)). 

 

Dirac Delta. A precise mathematical definition of the Dirac delta, 

denoted δ, is not possible to give here. Following its inventor P. Dirac, 
the definition should be 

δ(t) = dH(t). 

The latter is nonsensical, because the unit step does not have a cal- 

culus derivative  at t = 0.  However,  dH(t) could have  the meaning of  

a Riemann-Stieltjes integrator, which restrains dH(t) to have meaning 

only under an integral sign. It is in this sense that the Dirac delta δ is 
defined. 

What do we mean by the differential equation 
 

xJJ + 16x = 5δ(t − t0)? 

The equation  xJJ + 16x = f (t) represents  a spring-mass system  without 

damping having Hooke’s  constant 16,  subject to external  force f (t).  In 
a  mechanical  context,  the  Dirac  delta  term  5δ(t − t0)  is  an  idealization 
of a hammer-hit at time t = t0 > 0 with impulse 5. 

More precisely, the forcing term f (t) can be formally written as a Riemann- 

Stieltjes integrator 5dH(t−t0) where H is Heaviside’s unit step function. 

The Dirac delta or “derivative of the Heaviside unit step,”  nonsensical 

as it may appear, is realized in applications via the two-sided or central 

difference quotient 
 

H(t + h) − H(t − h) 

2h 
≈ dH(t). 



b ∫ 

dt 

net momentum or impulse. 
a 

b 
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Therefore, the force f (t) in the idealization 5δ(t − t0) is given for h > 0 

very small by the approximation 

f (t) ≈ 5 
H(t − t0 + h) − H(t − t0 − h) 

.
 

2h 

The impulse2 of the approximated force over a large interval [a, b] is 

computed from 
 

∫ 

f (t)dt ≈ 5 

∫

 
 

H(t − t0 + h) − H(t − t0 
 

 

− h)  
dt = 5, 

 

due to the integrand being 1/(2h) on |t − t0| < h and otherwise 0. 

 
Modeling Impulses. One argument for the Dirac delta idealization 

is that an infinity of choices exist for modeling an impulse. There are in 

addition to the central difference quotient two other popular difference 

quotients, the forward quotient (H(t + h) − H(t))/h and the backward 

quotient (H(t) − H(t − h))/h (h > 0 assumed). In reality, h is unknown 
in any application, and the impulsive force of a hammer hit is hardly 

constant, as is supposed by this naive modeling. 

The modeling logic often applied for the Dirac delta is that the external 
force f (t) is used in the model in a limited manner, in which only the 
momentum p = mv is important. More precisely, only the change in 

momentum or impulse is important, a f (t)dt = ∆p = mv(b) − mv(a). 

The precise force f (t) is replaced during the modeling by a simplistic 

piecewise-defined force that has exactly the same impulse ∆p. The re- 

placement is justified by arguing that if only the impulse is important, 
and not the actual details of the force, then both models should give 
similar results. 

Function or Operator? The work of physics Nobel prize  winner  P. 

Dirac (1902–1984) proceeded for about 20 years before the mathematical 

community developed a sound mathematical theory for his impulsive 

force representations. A systematic theory was developed in 1936 by 

the soviet mathematician S. Sobolev. The French mathematician L. 

Schwartz further developed the theory in 1945. He observed that the 

idealization is not a function but an operator or linear functional, in 

particular, δ maps or associates to each function φ(t) its value at t = 0, in 
short, δ(φ) = φ(0). This fact was observed early on by Dirac and others, 
during the replacement of simplistic forces by δ. In Laplace theory, there 

is a natural encounter with the ideas, because L(f (t)) routinely appears 
on the right of the equation after transformation. This term, in the case 

 

2Momentum is defined to be mass times velocity.  If the force f is given by Newton’s 
b − mv(a) is the 

law as f (t) = d (mv(t)) and v(t) is velocity, then 
∫ 

f (t)dt = mv(b) 

2h a −h 

h 
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of an impulsive force f (t) = c(H(t−t0 −h)−H(t−t0+h))/(2h), evaluates 

for t0 > 0 and t0 − h > 0 as follows: 

∞ 

L(f (t)) = 
0 

 
(H(t − t0 − h) − H(t − t0 + h))e−stdt 

2h 
t0+h 

= c 
e−stdt 

t0−h 2h  −sh 

−st 
. 

esh − e 
Σ

 

 
 

The factor 
esh − e−sh 

 

2sh 

 

is approximately 1 for h > 0 small, because of 

L’Hospital’s rule. The immediate conclusion is that we should replace 

the impulsive force f by an equivalent one f ∗ such that 

L(f ∗(t)) = ce−st0 . 

Well, there is no such function f ∗! 

The apparent mathematical flaw in this idea was resolved by the work 

of L. Schwartz on distributions. In short, there is a solid foundation  

for introducing f ∗, but unfortunately the mathematics involved is not 

elementary nor especially accessible to those readers whose background 

is just calculus. 

Practising engineers and scientists might be able to ignore the vast lit- 

erature on distributions, citing the example of physicist P. Dirac, who 

succeeded in applying impulsive force ideas without the distribution the- 

ory developed by S. Sobolev and L. Schwartz. This will not be the case 

for those who wish to read current literature on partial differential equa- 

tions, because the work on distributions has forever changed the required 

background for that topic. 

∫ 

= ce 0 

2sh 

c 

∫ 



∞ 

t=0 

∞ 

d 

ds 

ds 

ds 

∞ 

∫ 

− 

n 

270 Laplace Transform 
 

 

 Laplace Table Derivations 

Verified here are two Laplace tables, the minimal Laplace Table 7.2-4 
and its extension Table 7.2-5. Largely, this section is for reading, as it is 

designed to enrich lectures and to aid readers who study alone. 

Derivation of Laplace integral formulas in Table 7.2-4, page 252. 

• Proof of L(tn) = n!/s1+n: 

The first step is to evaluate L(t ) for n = 0. 
−st 

L(1) = 
∫
0  (1)e dt Laplace integral of f (t) = 1. 

= −(1/s)e−st|
t=∞

 Evaluate the integral. 

= 1/s Assumed s > 0 to evaluate limt→∞ e−st. 

The value of L(tn) for n = 1 can be obtained by s-differentiation of the relation 

L(1) = 1/s, as follows. 
d d ∞ 

 
  

−st 

ds L(1) = ds 

∫
0 (1)e 

  

dt Laplace integral for f (t) = 1. 
 

   

= 
∫
0

 ds (e 
) dt Used ds 

∫
a Fdt = 

∫
a 

ds dt. 

= 
∫
0 (−t)e 

−st dt Calculus rule (e 
u) J 

= uJeu. 

 
 

Then 

= −L(t) Definition of L(t). 

 

L(t) = − ds L(1) Rewrite last display. 

= − d (1/s) Use L(1) = 1/s. 

= 1/s2 Differentiate. 

 
This idea can be repeated to give L(t2) = − d L(t) and hence L(t2) = 2/s3. 

The pattern is L(tn) = − d L(tn−1) which gives L(tn) = n!/s1+n. 

• Proof of L(eat) = 1/(s − a): 

The result follows from L(1) = 1/s, as follows. 

L(e ) = 
∫
0 e e−st dt Direct Laplace transform. 
∞ 

= 0 e 
∞ 

−(s−a)t 

−St 
dt Use eAeB = eA+B . 

= 
∫
0  e dt Substitute S = s − a. 

= 1/S Apply L(1) = 1/s. 

= 1/(s − a) Back-substitute S = s − a. 

 
• Proof of L(cos bt) = s/(ss + b2) and L(sin bt) = b/(ss + b2): 

Use will be made of Euler’s formula eiθ = cos θ + i sin θ, usually first introd√uced 
 

in trigonometry. In this formula, θ is a real number (in radians) and i = 1 
is the complex unit. 

b dF b d d ∞ 

−st 

at at 



∞ 
∞ 

∫ 

∞ −st at 

− 
L L 

√ − | | 
L L | | 

∞ 

∞ 

∞ 

∞ 

− 
− − 

∞ 

∞ 

N →∞ 
n=1 

∫ 

b 

− 

∫ 
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eibte−st = (cos bt)e−st + i(sin bt)e−st Substitute θ = bt into Euler’s 

formula and multiply by e−st. 

∫
0 

e
 −ibt e−st 

dt = 
∫
0 (cos bt)e 

−stdt Integrate t = 0 to t = ∞. Use 
∞ 

+ i 0 (sin bt)e 
1 ∞ −st 

 
 

−stdt properties of integrals. 

s ib 
=  0  (cos bt)e dt 

+ i  0  (sin bt)e dt 

1 

Evaluate the left side using 

L(e ) = 1/(s − a), a = ib. 

s ib 
=   (cos bt) + i  (sin bt) Direct Laplace transform defini- 

tion. 
s + ib 

s2 + b2 

 
s 

=    (cos bt) + i (sin bt) Use complex rule 1/z = z/ z 2, 

z = A + iB, z = A iB,  z = 

A2 + B2. 

s2 + b2  
= L(cos bt) Extract the real part. 

b 

s2 + b2  
= L(sin bt) Extract the imaginary part. 

 
Derivation of Laplace integral formulas in Table 7.2-5, page 252. 

• Proof of the Heaviside formula L(H(t − a)) = e−as/s. 
−st 

L(H(t − a)) = 
∫
0  H(t − a)e dt Direct Laplace transform. Assume a ≥ 0. 

−st 

= 
∫
a  (1)e dt Because H(t − a) = 0 for 0 ≤ t < a. 

= 
∫
0 (1)e 

−s(x+a) dx Change variables t = x + a. 

= e−as ∫
0 (1)e 

−sx dx Constant e −as moves outside integral. 

= e−as(1/s) Apply L(1) = 1/s. 

• Proof of the Dirac delta formula L(δ(t − a)) = e−as. 

The definition of the delta function is a formal one, in which every occurrence of 
δ(t a)dt under an integrand is replaced by dH(t a). The differential symbol 
dH(t  a) is taken in the sense of the Riemann-Stieltjes  integral.  This integral  
is defined in [?] for monotonic integrators α(x) as the limit 

 

∫ 

f (x)dα(x) = lim 
 

N 

Σ 
f (xn)(α(xn) − α(xn−1)) 

 

where x0 = a, xN = b and x0 < x1 < · · · < xN forms a partition of [a, b] whose 
mesh approaches zero as N → ∞. 

The steps in computing the Laplace integral of the delta function appear below. 
Admittedly, the proof requires advanced calculus skills and a certain level of 
mathematical maturity. The reward is a fuller understanding of the Dirac 
symbol δ(x). 

L(δ(t − a)) = 
∫
0 e 

= 
∫
0  e 

 

−st 

−st 

δ(t − a)dt Laplace integral, a > 0 assumed. 

dH(t − a) Replace δ(t − a)dt by dH(t − a). 
 

 

= limM→∞ 
∫
0 e 

−st dH(t − a) Definition of improper integral. 
M 

a 



− − 
≤ 

∞ 

∞ 

L 

2 

N →∞ 
n=0 

∞ n+1 

∞ n −ns 

M 
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= e−sa Explained below. 

 

To explain the last step, apply the definition of the Riemann-Stieltjes integral: 

∫ 

e−stdH(t − a) = lim 
 

 

N −1 

Σ 
e−stn (H(tn − a) − H(tn−1 − a)) 

 

where 0 = t0 < t1 < · · · < tN = M is a partition of [0, M ] whose mesh 
max1≤n≤N (tn − tn−1) approaches zero as N → ∞. Given a partition, if tn−1 < 

a ≤ tn, then H(tn−a)−H(tn−1−a) = 1, otherwise this factor is zero. Therefore, 
the sum reduces to a single term e−stn . This term approaches e−sa as N → ∞, 
because tn must approach a. 

• 
e−as 

Proof of L(floor(t/a)) = 
s(1 − e−as) 

: 

The library function floor present in computer languages C and Fortran is 
defined by floor(x) = greatest whole integer x, e.g., floor(5.2) =  5 and 
floor( 1.9) = 2. The computation of the Laplace integral of floor(t) requires 
ideas from infinite series, as follows. 

−st 

F (s) = 
∫
0  floor(t)e dt Laplace integral definition. 

= 
Σ

n=0 

∫
n (n)e 

 
 

dt On n ≤ t < n + 1, floor(t) = n. 
 

 

= 
Σ

n=0 s 
(e − e 

 

 

) Evaluate each integral. 

= 
1 − e 

s 
Σ

n=0 

ne−sn Common factor removed. 

= 
x(1 − x) 

 
 

∞   
nxn−1 Define x = e−s. 

s 

Σ
n=0 

= 
x(1 − x) d 

∞    
xn Term-by-term differentiation. 

s dx 

Σ
n=0 

= 
x(1 − x) d 1 Geometric series sum. 

s 
x 

= 
s(1 − x) 

e−s 

dx 1 − x  
Compute the derivative, simplify. 

 
−s 

= 
s(1 − e−s) 

Substitute x = e . 

 

To evaluate the Laplace integral of floor(t/a), a change of variables is made. 

L(floor(t/a)) = 
∫
0 floor(t/a)e 

 

−st dt Laplace integral definition. 

= a 
∫
0 floor(r)e 

−asr dr Change variables t = ar. 

= aF (as) Apply the formula for F (s). 

e−as 

= 
s(1 − e−as) 

Simplify. 

• 
Proof  of (sqw(t/a)) = 

1 
tanh(as/2): 

s 

The square wave defined by sqw(x) = (−1)floor(x) is periodic of period 2 and 
−st 

piecewise-defined. Let P = 
∫
0 sqw(t)e dt. 

∞ 

∞ 

−ns−s 

0 

−st 

−s 



1 2 

− 
−2s −s 

− 

2 

− 

∞ 

∫ 

L 

∫
L

 

L 

∫ 
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1 −st 2 −st b c b 

P = 
∫
0 sqw(t)e dt + 

∫
1 sqw(t)e dt Apply 

∫
a = 

∫
a + 

∫
c . 

= 
∫
0 e 

−st 
dt − 

∫
1 e 

−st dt Use sqw(x) = 1 on 0 ≤ x < 1 and 

sqw(x) = −1 on 1 ≤ x < 2. 

= 
1 

(1 e−s) + 
1 

(e 
s s 

− e ) Evaluate each integral. 

= 
1 

(1 e−s)2 Collect terms. 
s 

An intermediate step is to compute the Laplace integral of sqw(t): 

L(sqw(t)) = 

∫
0 
sqw(t)e

 
−stdt Periodic function formula, page 275. 

1 − e−2s 

= 
1 

(1 − e−s)2 
1
 . Use the computation of P above. 

s 
1 1 − e−s 

 
 

1 − e−2s 
 

 
−2s 

 

 
−s −s 

= 
s 1 + e−s 

. Factor 1 − e = (1 − e )(1 + e ). 

1 es/2 e−s/2 

= 
s es/2 + e−s/2 

. Multiply the fraction by e 

 
s/2 /es/2. 

= 
1 sinh(s/2) 

. Use sinh u = (eu − e−u)/2, 

s cosh(s/2) 

1 
cosh u = (eu + e−u)/2. 

=  tanh(s/2). Use tanh u = sinh u/ cosh u. 
s 

 

To complete the computation of L(sqw(t/a)), a change of variables is made: 

L(sqw(t/a)) = 
∫
0 sqw(t/a)e −st dt Direct transform. 
∞ 

= 0 sqw(r)e 
a 

−asr (a) dr Change variables r = t/a. 

= 
as 

tanh(as/2) See L(sqw(t)) above. 

1 
= tanh(as/2) 

s 
 

• Proof  of (a trw(t/a)) = 
1 

tanh(as/2): 
s2 

t 

The triangular wave is defined by trw(t) = 
∫
0 sqw(x)dx. 

1 
J J 

L(a trw(t/a)) = 
s 

(f (0) + L(f (t)) Let f (t) = a trw(t/a). Use L(f (t)) = 
sL(f (t)) − f (0), page 251. 

1 t/a J 

= 
s  

(sqw(t/a)) Use f (0)  =  0, (a 0 sqw(x)dx) = 
sqw(t/a). 

1 
= 

s2 
tanh(as/2) Table entry for sqw. 

• Proof of (tα) = 
Γ(1 + α)

: 
s1+α 

L(t 

 

∞ 
) = 0 t 

∞ 
e−st 

α 

 

dt Direct Laplace transform. 
−u 

= 
∫
0 (u/s) e 

du/s Change variables u = st, du = sdt. 

α α 



∫ 

∫ 

s 

· · · 
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1 ∞ α −u 

= 
s1+α    0   u e du 

1 
 

 

 
∞   x−1  −u 

= 
s1+α 

Γ(1 + α). Where Γ(x) = 0 u 
definition. 

e du, by 

The generalized factorial function Γ(x) is defined for x > 0 and it agrees with 
the classical factorial n! = (1)(2) (n) in case x = n + 1 is an integer. In 
literature, α! means Γ(1 + α). For more details about the Gamma function, see 
Abramowitz and Stegun [?], or maple documentation. 

• Proof of L(t−1/2) = 

. 
π 

: 
 

(t−1/2) = 
Γ(1 + (−1/2)) 

s1−1/2 

√
π

 
 

 

 

Apply the previous formula. 

√ 
 

= √
s 

Use Γ(1/2) = π. 

L 



0 

∫ 

t 
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7.7 Transform Properties 

Collected here are the major theorems and their proofs for the manipu- 

lation of Laplace transform tables. 

Theorem 4 (Linearity) 

The Laplace transform has these inherited integral properties: 

(a) L(f (t) + g(t)) = L(f (t)) + L(g(t)), 

(b) L(cf (t)) = cL(f (t)). 

Theorem 5 (The t-Derivative Rule) 

Let  y(t)  be  continuous,  of  exponential  order  and  let  f J(t)  be  piecewise 

continuous on t ≥ 0.  Then L(yJ(t)) exists and 

L(yJ(t)) = sL(y(t)) − y(0). 

Theorem 6 (The t-Integral Rule) 

Let g(t) be of exponential order and continuous for t ≥ 0. Then 

1 

L 
.∫ t g(x) dx

Σ 
= 

L(g(t)). 
s 

Theorem 7 (The s-Differentiation Rule) 

Let f (t) be of exponential order. Then 

 

L(tf (t)) = − 

 

Theorem 8 (First Shifting Rule) 

d 
L(f (t)). 

ds 

Let f (t) be of exponential order and −∞ < a < ∞. Then 

L(eatf (t)) = L(f (t))|s→(s−a) . 

Theorem 9 (Second Shifting Rule) 

Let f (t) and g(t) be of exponential order and assume a ≥ 0. Then 

(a) L(f (t − a)H(t − a)) = e−asL(f (t)), 

(b) L(g(t)H(t − a)) = e−asL(g(t + a)). 

Theorem 10 (Periodic Function Rule) 

Let f (t) be of exponential order and satisfy f (t + P ) = f (t). Then 
 

P −st 

L(f (t)) =   0 
f (t)e dt

. 

1 − e−Ps 

Theorem 11 (Convolution Rule) 

Let f (t) and g(t) be of exponential order. Then 
 

L(f (t))L(g(t)) = L 

.∫ 

f (x)g(t − x)dx

Σ 

. 
 0 



∞ 

∞ ∞ 

∞ 

∞ 

L 

→ ∞ 

t ∫ 

t ∫ 

s 

L − 
L  − L − 

. . 

N 
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Proof of Theorem 4 (linearity): 

LHS = L(f (t) + g(t)) Left side of the identity in (a). 
−st 

= 
∫
0  (f (t) + g(t))e dt Direct transform. 

= 
∫
0 f (t)e 

−st 

dt + 
∫
0 g(t)e 

−st dt Calculus integral rule. 

= L(f (t)) + L(g(t)) Equals RHS; identity (a) verified. 

LHS = L(cf (t)) Left side of the identity in (b). 

= 
∫
0 cf (t)e 

−st dt Direct transform. 

−st 

= c 
∫
0  f (t)e dt Calculus integral rule. 

= cL(f (t)) Equals RHS; identity (b) verified. 

 
Proof  of  Theorem  5  (t-derivative  rule):  Already    (f (t))  exists,  because 
f  is  of  exponential  order  and  continuous.   On  an  interval  [a, b]  where  f J  is 
continuous, integration by parts using u = e−st, dv = f J(t)dt gives 

 b    J −st 
 

−st t=b b 
 

−st 

∫
a f (t)e 

dt = f (t)e |t=a − 
∫
a f (t)(−s)e dt 

 

= −f (a)e −sa + f (b)e −sb 

+ s 
∫
a f (t)e 

−st dt. 

On any interval [0, N ], there are finitely many intervals [a, b] on each of which 
f J is  continuous.  Add  the  above equality across these  finitely  many  intervals 
[a, b].  The boundary values on adjacent intervals match and the integrals add 
to give 

∫ 

f J(t)e−stdt = −f (0)e0 + f (N )e−sN + s 

∫

 
 

 
N 

f (t)e−stdt. 

Take  the limit across this equality as N . Then the right side has limit 
−st 

−f (0) + sL(f (t)), because of the existence of L(f (t)) and limt→∞ f (t)e = 0 
for large s.  Therefore, the left side has a limit, and by definition L(f J(t)) exists 
and L(f J(t)) = −f (0) + sL(f (t)). 

 

Proof of Theorem 6 (t-Integral rule): Let f (t) = 0 g(x)dx. Then f is of 
exponential order and continuous. The details: 

L(  0 g(x)dx) = L(f (t)) By definition. 

=  
1 
L(f J(t)) Because f (0) = 0 implies L(f J(t)) = sL(f (t)). 

=  
1 
L(g(t)) Because f J = g by the Fundamental theorem of 

s 
calculus. 

 

Proof of Theorem 7 (s-differentiation): We prove the equivalent relation 
(( t)f (t)) = (d/ds) (f (t)). If f is of exponential order, then so is ( t)f (t), 
therefore (( t)f (t)) exists. It remains to show the s-derivative exists and 
satisfies the given equality. 

The proof below is based in part upon the calculus inequality 

(1) e−x + x − 1  ≤ x2, x ≥ 0. 

0 

b 

0 



2 

ƒ − 

h→0 

L | | ≤ 

Σ 

| |L | | | | 

L − 

∞ 
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The  inequality is obtained  from two  applications of the  mean  value  theorem 

g(b)−g(a) = g J(x)(b−a), which gives e−x+x−1 = xxe−x1  with 0 ≤ x1 ≤ x ≤ x. 

In addition, the  existence  of L(t2|f (t)|)  is  used to  define  s0 > 0 such  that  
(t  f (t) )    1 for s > s0.  This  follows from the transform existence theorem  
for functions of exponential order, where it is  shown that the  transform has  
limit zero at s = ∞. 

Consider h = 0 and the Newton quotient Q(s, h) = (F (s + h) F (s))/h for the 

s-derivative of the Laplace integral. We have to show that 

lim |Q(s, h) − L((−t)f (t))| = 0. 

This will be accomplished by proving for s > s0 and s + h > s0 the inequality 

|Q(s, h) − L((−t)f (t))| ≤ |h|. 
 

For h ƒ= 0, 

Q(s, h) − L((−t)f (t)) = 

∫

 

 
 

∞ 

f (t) 

 
e−st−ht 

 
 

−st 
 

 

 

 

+ the 

 
 

−st 

 
 

dt. 

 

Assume h > 0. Due to the exponential rule eA+B = eAeB, the quotient in the 
integrand simplifies to give 

Q(s, h) − L((−t)f (t)) = 

∫

 f (t)e−st 

. 
e
 

 

−ht + th − 1 
dt. 

h 
 

Inequality (1) applies with x = ht ≥ 0, giving 

|Q(s, h) − L((−t)f (t))| ≤ |h| 

∫

 

 
 

∞ 

t2|f (t)|e−stdt. 
 

The right side is h (t2 f (t) ), which for s > s0 is bounded by h , completing 
the proof for h > 0. If h < 0, then a similar calculation is made to obtain 

|Q(s, h) − L((−t)f (t))| ≤ |h| 

∫

 
∞ 

t2|f (t)e−st−htdt. 
 

The right side is |h|L(t2|f (t)|) evaluated at s + h instead of s. If s + h > s0, 
then the right side is bounded by |h|, completing the proof for h < 0. 

Proof of Theorem 8 (first shifting rule): The left side LHS of the equality 
can be written because of the exponential rule eAeB = eA+B as 

∞ 

LHS = 
0 

 

f (t)e−(s−a)tdt. 

This integral is    (f (t)) with s replaced by s a, which is precisely the meaning 
of the right side RHS of the equality. Therefore, LHS = RHS. 

Proof of Theorem 9 (second shifting rule): The details for (a) are 

LHS = L(H(t − a)f (t − a)) 
−st 

= 
∫
0  H(t − a)f (t − a)e dt Direct transform. 

0 

0 

h 

0 

∫ 

0 

− e 

∞ 



∞ 

∞ 

∞ 

∞ 

Σ
=  e 

∫ 
f (x)e 

Σ 

∫ 

∫ 

∞ nP +P −st 

∞ P −sx−nPs 
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= 
∫
a H(t − a)f (t − a)e 

−st dt Because a ≥ 0 and H(x) = 0 for x < 0. 

= 
∫
0 H(x)f (x)e 

−s(x+a) dx Change variables x = t − a, dx = dt. 

= e−sa ∫
0 f (x)e 

−sx dx Use H(x) = 1 for x ≥ 0. 

= e−saL(f (t)) Direct transform. 

= RHS Identity (a) verified. 

 
In the details for (b), let f (t) = g(t + a), then 

LHS = L(H(t − a)g(t)) 

= L(H(t − a)f (t − a)) Use f (t − a) = g(t − a + a) = g(t). 

= e−saL(f (t)) Apply (a). 

= e−saL(g(t + a)) Because f (t) = g(t + a). 

= RHS Identity (b) verified. 

 

Proof of Theorem 10 (periodic function rule): 

LHS = L(f (t)) 
−st 

= 
∫
0  f (t)e dt Direct transform. 

= 
Σ

n=0 

∫
nP f (t)e dt Additivity of the integral. 

= 
Σ

n=0 

∫
0  f (x + nP )e dx Change variables t = x + nP . 

∞ 
n=0 

 
P 

−nPs P 
0 

 
−sx ∞ 

−sx 
 

 n 

dx Because f is P -periodic and 
eAeB = eA+B . 

= 
∫
0 f (x)e 

P 

 

 

 
−sx 

dx n=0 r 

1 
 

 

Common factor in summation. 

Define r = e−Ps. 

= 0 f (x)e 

P 

dx Sum the geometric series. 
1 − r 

−sx 

=   0  f (x)e dx 

1 − e−Ps 

Substitute r = e−Ps. 

= RHS Periodic function identity verified. 

 
Left unmentioned here is the convergence of the infinite series on line 3 of the 
proof, which follows from f of exponential order. 

 

Proof  of  Theorem  11  (convolution  rule):  The  details  use  Fubini’s  in- 
tegration interchange theorem for a planar  unbounded  region,  and  therefore 
this proof involves advanced calculus methods that may be outside the back- 
ground of the reader. Modern calculus texts contain a less general version of 
Fubini’s theorem for finite regions, usually referenced as iterated  integrals.  The 
unbounded planar region is written in two ways: 

D = {(r, t) : t ≤ r < ∞, 0 ≤ t < ∞}, 

D = {(r, t) : 0 ≤ r < ∞, 0 ≤ r ≤ t}. 

Readers should pause here and verify that D = D. 



≥ 

∞ ∞ 

∞ ∞ 

∫ ∫ 

0 

∞ r 

∞ r 

∞ r 
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The change of variable r = x + t, dr = dx is applied for fixed t 0 to obtain 
the identity 

 
(2) 

e−st 
∫
0 g(x)e 

 

−sx dx  = 
∫
0 g(x)e 

 

−sx−stdx 

−rs 

= 
∫
t   g(r − t)e dr. 

The left side of the convolution identity is expanded as follows: 

LHS = L(f (t))L(g(t)) 

= 
∫
0 f (t)e 

−st 
 

 
dt 

∫
0 g(x)e 

−sx dx Direct transform. 

= 0 f (t) t g(r − t)e 
−rs 

drdt Apply identity (2). 

= 
∫
D f (t)g(r − t)e 

= 
∫
D f (t)g(r − t)e 

drdt Fubini’s theorem applied. 

drdt Descriptions D and D are the same. 
 

 

 
Then 

= 
∫
0 

∫
0 f (t)g(r − t)dte 

dr Fubini’s theorem applied. 

RHS = L 
.∫ t 

f (u)g(t − u)du
Σ

 
∞   t −st 

= 
∫
0 

∫
0 f (u)g(t − u)due 

dt Direct transform. 
 

 

= 
∫
0 

∫
0 f (u)g(r − u)due dr Change variable names r ↔ t. 

= 
∫
0 

∫
0 f (t)g(r − t)dt e dr Change variable names u ↔ t. 

−sr 

−rs 

∞ 

∞ 

−rs 

∞ 
−rs 

−sr 

= LHS Convolution identity verified. 
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 More on the Laplace Transform 

Model conversion  and engineering.  A differential  equation  model 
for a physical system can be subjected to the Laplace transform in order 

to produce an algebraic model in the transform variable s. Lerch’s the- 

orem says that both models are equivalent, that is, the solution of one 
model gives the solution to the other model. 

In electrical and computer engineering it is commonplace to deal only 
with the Laplace algebraic model. Engineers are in fact capable of hav- 
ing hour-long modeling conversations, during which differential equations 

are never referenced! Terminology for such modeling is necessarily spe- 

cialized, which gives rise to new contextual meanings to the terms input 

and output. For example, an RLC-circuit would be discussed with input 

ω 
F (s) = , 

s2 + ω2 

and the listener must know that this expression is the Laplace transform 
of the t-expression sin ωt. Hence the RLC-circuit is driven by a sinu- 
soindal input of natural frequency ω. During the modeling discourse, it 

could be that the output is 

1 10ω 
X(s) = 

s + 1 
+ 

s2 + ω2 
. 

Lerch’s equivalence says  that X(s) is the Laplace transform of e−t +  

10 sin ωt, but that is extra work, if all that is needed from the model is a 
statement about the transient and steady-state responses to the input. 



 z transforms 

 
In the study of discrete-time signal and systems, we have thus far 

considered the time-domain and the frequency domain. The z- 

domain gives us a third representation. All three domains are 

related to each other. 

A special feature of the z-transform is that for the signals 

and system of interest to us, all of the analysis will be in terms of 

ratios of polynomials. Working with these polynomials is rela- 

tively straight forward. 

 

Definition of the z-Transform 
 

• Given a finite length signal 

as 

xn, the z-transform is defined 

 

 
(7.1) 

 

 

where the sequence support interval is [0, N], and z is any 

complex number 

• This transformation produces a new representation of xn 

denoted X(z) 

• Returning to the original sequence (inverse z-transform) xn 

requires finding the coefficient associated with the nth power 

of z
–1
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N k 

=  xk(z
–1 

) 
k = 0 

N 

X(z) =  xkz
–k

 

k  = 0 

 
 



Definition of the z-Transform 

 

•  Formally transforming from the time/sequence/n-domain to 

the z-domain is represented as 

n-Domain 
z
  omain 

xn = 

N 

 
k = 0 

xkn – k  X(z) 

N 

=  
k  = 0 

xkz
–k

 

 

• A sequence and its z-transform are said to form a z-transform 

pair and are denoted 

xn 
z
 X(z) (7.2) 

 

– In the sequence or n-domain the independent variable is n 

– In the z-domain the independent variable is z 
 

 

Example: xn = n – n0  

• Using the definition 

 

X(z) 

 
• Thus, 

N 

=  
k  = 0 

xkz
–k

 

N 

=  
k  = 0 

k – n0 z
–k 

= z
–n0 

 

n – n 
z 

0  z
–n0 
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The z-Transform and Linear Systems 
 

 
 

Example: xn = 2n + 3n – 1 + 5n – 2 + 2n – 3 

• By inspection we find that 
 

X(z) = 2 + 3z
–1 

+ 5z
–2 

+ 2z
–3

 
 

 

 

Example: X(z) = 4 – 5z
–2 

+ z
–3 

– 2z
–4

 

• By inspection we find that 

xn = 4n – 5n – 2 + n – 3 – 2n – 4 
 

• What can we do with the z-transform that is useful? 

 

The z-Transform and Linear Systems 

• The z-transform is particularly useful in the analysis and 

design of LTI systems 
 

The z-Transform of an FIR Filter 

• We know that for any LTI system with input 

 
xn 

 
and 

impulse response hn, the output is 

yn = xn*hn (7.3) 

• We are interested in the z-transform of 

FIR filter 

hn, where for an 

hn = 

M 

 
k = 0 

bkn – k 
 

(7.4) 
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k 

k 

The z-Transform and Linear Systems 

• To motivate this, consider the input 

xn = z
n
 –  n   (7.5) 

• The output 

yn 

yn is 

M = b 

 
 xn – k = 

 

 
M 

b z
n – k 

 
k = 0 

M 

k 

 

 n –k 

 k 

k = 0 

 M  n 

 

(7.6) 

=  bkz z =   b z
–k

 z 

k = 0 
  

k = 0 

• The term in parenthesis is the z-transform of 

known as the system function of the FIR filter 

hn, also 

• Like H(e
j

) was defined in Chapter 6, we define the system 

function as 

 
(7.7) 

 

 

• The z-transform pair we have just established is 

hn z H(z) 
 

M 

 
k = 0 

bkn – k z 

M 

 
k = 0 

b z
–k 

 

• Another result, similar to the frequency response result, is 
 

yn = hn*z
n

 = H(z)z
n
 (7.8) 
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=  hkz
–k

 

k = 0 

k 

M 
–k 

b z 
M 

 
k = 0 

H(z) = 



0 1 M 

1 2 M 

1 2 M 

 

– Note if z 

The z-Transform and Linear Systems 
 

=  e
ĵ 

, we in fact have the frequency response 

result of Chapter 6 

• The system function is an Mth degree polynomial in complex 

variable z 

• As with any polynomial, it will have M roots or zeros, that is 

there are M values z0 such that H(z0) = 0 

– These M zeros completely define the polynomial to within 

a gain constant (scale factor), i.e., 

H(z) = b + b  z
–1 

+  + b z
–M

 

=  (1 – z  z
–1 

)(1 – z z
–1

)(1 – z z
–1 

) 

(z – z  )(z – z  )(z – z ) 
=  -------------------------------------------------------------- 

z
M 

 

where zk k = 1  M denote the zeros 
 

 

Example: Find the Zeros of 
 

hn =  n + 
1
--n – 1 – 

1
--n – 2 

6 6 
 

• The z-transform is 

H(z) = 

 
= 

 
1 + 

1
--z

–1 
– 

1
--z

–2 

6 6 

1 + 
1
--z

–1 1 – 
1
--z

–1 

 2   3  

=  z + 
1
-- z – 

1
--  z

2
 

 2  3 
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N N 

1 2 

 

• The zeros of 

 
H(z) 

 

are -1/2 and +1/3 

Properties of the z-Transform 

• The difference equation 

yn = 6xn + xn – 1 – xn – 2 
 

has the same zeros, but a different scale factor; 

proof: 

 

 

 

 

 

 

 
 

 

Properties of the z-Transform 

• The z-transform has a few very useful properties, and its def- 

inition extends to infinite signals/impulse responses 
 

The Superposition (Linearity) Property 
 

 

proof 

 
 

(7.9) 

X(z) =  
n  = 0 

(ax1 n + bx2 n)z
–1

 

 

=  a  
n  = 0 

x nz
–1 

+ b  
n  = 0 

x nz
–1

 

= aX1(z) + bX2(z) 
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2 1 2 1 
ax  n + bx  n 

z 
aX  (z) + bX  (z) 



0 

0 1 N 

0 1 N 

 

The Time-Delay Property 

xn – 1 
z
 

 

 
z
–1

X(z) 

Properties of the z-Transform 

 
 
 
 

(7.10) 

and  
xn – n   

z
 

proof: Consider 

 
z
–n0 

X(z) 

 

 
(7.11) 

 

 

 
then 

X(z) 

 

N 

=  +   z
–1 

+  +  z
–N

 

xn =  
k  = 0 

kn – k 

 

Let 

= 0n + 1n – 1 +  + Nn – N 

 

Y(z) 

 
 

so 

= z
–1

X(z) 

=    z
–1 

+   z
–2 

+  +  z
– N – 1

 

yn = 

= 

0n – 1 + 1n – 2 +  + Nn – N – 1 

xn – 1 
 

Similarly  

Y(z) 

 yn 

 

= z
–n0 

X(z) 

= xn – n0  
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A General z-Transform Formula 

The z-Transform as an Operator 

• We have seen that for a sequence xn having support inter- 

val 0  n  N the z-transform is 

 

X(z) = 

N 

 
n = 0 

xnz
–n

 

 
(7.12) 

• This definition extends for doubly infinite sequences having 

support interval –  n   to 
 

X(z) =  
n = – 

xnz
–n

 (7.13) 

– There will be discussion of this case in Chapter 8 when we 

deal with infinite impulse response (IIR) filters 

 

The z-Transform as an Operator 

The z-transform can be considered as an operator. 
 

Unit-Delay Operator 

xn 

xn 

 

 
yn = 

 

 

 
 

 

 
xn – 1 
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z
–1 

Unit 
Delay 

 



0 1 

The z-Transform as an Operator 

 

• In the case of the unit delay, we observe that 
 

yn = z
–1

xn = xn – 1 
 

(7.14) 
unit delay operator 

 

which is motivated by the fact that 

• Similarly, the filter 

 

Y(z) = z
–1

X(z) 

yn = xn – xn – 1 
 

can be viewed as the operator 
 

 
 

since 

yn = (1 – z
–1 

)xn = xn – xn – 1 

 

Y(z) = X(z) – z
–1

X(z) = (1 – z
–1

)X(z) 
 

 

Example: Two-Tap FIR 
 

• Using the operator convention, we can write by inspection 

that 

Y(z) 

yn 

=  b  X(z) + b z
–1

X(z) 

=  b0xn + b1xn – 1 
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Y(z) = H(z)X(z) 

Convolution and the z-Transform 

 

Convolution and the z-Transform 

• The impulse response of the unity delay system is 

hn = n – 1 
 

and the system output written in terms of a convolution is 

yn = xn*n – 1 = xn – 1 

• The system function (z-transform of hn) is 

H(z) = z
–1 

 

and by the previous unit delay analysis, 
 

Y(z) = z
–1

X(z) 

• We observe that 
 

proof: 

M 

 

 

 
(7.15) 

yn = xn*hn =  
k  = 0 

hkxn – k (7.16) 

We now take the z-transform of both sides of (7.16) using 

superposition and the general delay property 

 

Y(z) 

M 

=  
k  = 0 

hk(z
–k

X(z)) 

M  
=   hkz

–k 
X(z) = 

 
H(z)X(z) 

(7.17) 


k = 0 
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Convolution and the z-Transform 

 

• Note: For the case of xn a finite duration sequence, X(z) is 

a polynomial, and 

z
–1 

H(z)X(z) is a product of polynomials in 

 
 

Example: Convolving Finite Duration Sequences 

• Suppose that 

xn 

hn 

= 2n – 3n – 2 + 4n – 3 

= n + 2n – 1 + n – 2 

• We wish to find yn by first finding Y(z) 

• We begin by z-transforming each of the sequences 
 

X(z) 

H(z) 

= 2 – 3z
–2 

+ 4z
–3

 

= 1 + 2z
–1 

+ z
–2

 

• We find Y(z) by direct multiplication 
 

Y(z) = (2 – 3z
–2 

+ 4z
–3

)(1 + 2z
–1 

+ z
–2

) 

= 2 + 4z
–1 

– z
–2 

– 2z
–3 

+ 5z
–4 

+ 4z
–5

 

• We find 

Y(z) 

yn using the delay property on each of the terms of 

yn = 2n + 4n – 1 – n – 2 

– 2n – 3 + 5n – 4 + 4n – 5 
 

Convolve directly? 
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z-Transform Convolution Theorem 

yn = hn*xn 
z   

H(z)X(z)  =  Y(z) 

Convolution and the z-Transform 

 

• This section has established the very important result that 

polynomial multiplication can be used to replace sequence 

convolution, when we work in the z-domain, i.e., 
 

 
Cascading Systems 

• We have seen cascading of systems in the time-domain and 

the frequency domain, we now consider the z-domain 
 

• We know from the convolution theorem that 

 
 

• It also follows that 

 
 

so by substitution 

W(z) 

Y(z) 

=  H1(z)X(z) 

 
=  H2(z)W(z) 

Y(z) =  H2(z)H1(z)X(z) 

=  H1(z)H2(z)X(z) 

 

(7.18) 
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z 
hn = h1n*h2n  H1(z)H2(z) = H(z) 

Convolution and the z-Transform 

 

• In summary, when we cascade two LTI systems, we arrive at 

the cascade impulse response as a cascade of impulse 

responses in the time-domain and a product of the z-trans- 

forms in the z-domain 
 

 

Factoring z-Polynomials 

• Multiplying z-transforms creates a cascade system, so factor- 

ing must create subsystems 

Example: 

• Since 

H(z) 

H(z) 

= 1 + 3z
–1 

– 2z
–2 

+ z
–3

 

is a third-order polynomial, we should be able to 

factor it into a first degree and second degree polynomial 

• We can use the MATLAB function roots() to assist us 

>> p = roots([1 3 -2 1]) 

 
p = -3.6274 

0.3137 + 0.4211i 

0.3137 - 0.4211i 

 
>> conv([1 -p(2)],[1 -p(3)]) 

 
ans = 1.0000 -0.6274 0.2757 - 0.0000i 

• With one real root, the logical factoring is to create two poly- 

nomials as follows 
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1 – 0.6274z
–1 

+ 0.2757z
–2

 1 + 3.6274z
–1

 

H1(z) = 1 + 3.6274z
–1

 

Convolution and the z-Transform 

H2(z) =  (1 – (0.3137 + j0.4211)z
–1 

) 

(1 – (0.3137 – j0.4211)z
–1 

) 

=  1 – 0.6274z
–1 

+ 0.2757z
–2

 
 

• The cascade system is thus: 

xn wn yn 
   

X(z) W(z) Y(z) 

H1(z) H2(z) 

• As a check we can multiply the polynomials 

>> conv([1 -p(1)],conv([1 -p(2)],[1 -p(3)])) 

 
ans = 1.0000, 3.0000, -2.0000-0.0000i, 1.0000-0.0000i 

• The difference equations for each subsystem are 

wn 

yn 

= xn + 3.6274xn – 1 

= wn – 0.6274wn – 1 + 0.2757wn – 2 
 

 

 

Deconvolution/Inverse Filtering 

• In a two subsystems cascade can the second system undo the 

action of the first subsystem? 

• For the output to equal the input we need 

• We thus desire 

H(z) = 1 

H1(z)H2(z) = 1 or H2(z) = ------
1
-------- 

H1(z) 
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1 

 

 
Example: 

 

H1(z) 

 
= 1 – az

–1
 

 
 

a  1 

Convolution and the z-Transform 

• The inverse filter is 

H2(z) = 

 
------

1
--------  = 

H1(z) 

 
---------

1
---------- 

1 – az
–1

 
 

• This is no longer an FIR filter, it is an infinite impulse 

response (IIR) filter, which is the topic of Chapter 8 

• We can approximate H2(z) as an FIR filter via long division 

 
1 – az

–1
 

1 + az
–1 

+ a
2
z
–2 

+  

 

1 – az
–1

 
 

 

az
–1 

az
–1 

– a
2
z

–2 

 
 

a
2
z

–2 

a
2
z

–2 
– a

3
z

–3 

 
 

a
3
z

–3 

 

• An M + 1 term approximation is 

H2(z) = 

M 

 
k = 0 

a
k
z
–k 

– Recall the deconvolution filter of Lab 8? 
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k b z
–k 

M 

 
k = 0 

versus 
H(z) = 

–ĵ k 
M 

H(e
ĵ 

) =  b  e 
k 

k = 0 

z - Domain ̂  - Domain 

Relationship Between the z-Domain and the Frequency Domain 

 

Relationship Between the z-Domain and the 

Frequency Domain 
 

• Comparing the above we see that the connection is setting 

z  =  e
ĵ

 in H(z), i.e.,  

 
(7.19) 

 

 

The z-Plane and the Unit Circle 

• If we consider the z-plane, we see that 

 

H(e
ĵ 

) 

 
corresponds to 

evaluating H(z) on the unit circle 

 

z-Plane 

Im z 

̂ 
   

= j 

=  

-- 
2 

 

 
 

z = e 

 

 
ĵ 

 

 

 

̂ 

Re 

̂   =   
z = –1 

̂   =  0 
z = 1 

 

unit circle  

z = 

̂   = 

 

–j 

–

-- 
2 
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H(e
ĵ 

)  =  H(z) 
z = ej

ˆ

 



1 2 3 

1 2 3 

1 2 3 

Relationship Between the z-Domain and the Frequency Domain 
 

• From this interpretation we also can see why H(e
ĵ 

) is peri- 

odic with period 2 

–  As ̂ increases it continues to sweep around the unit circle 

over and over again 

 
The Zeros and Poles of H(z) 

• Consider 
 

H(z) = 1 + b z
–1 

+ b z
–2 

+ b z
–3

 (7.20) 
 

where we have assumed that b0 = 1 

• Factoring H(z) results in 
 

H(z) = (1 – z z
–1 

)(1 – z z
–1

)(1 – z z
–1

) (7.21) 

• Multiplying by z
3 

 z
3
 allows to write H(z) in terms of posi- 

tive powers of z  
z
3 

+ b z
2 

+ b z
1 

+ b z
0
 

H(z) = 

 

= 

---------------1-----------------2-----------------3------- 

z
3 

(z – z )(z – z )(z – z ) 
------------------------------------------------------ 

z
3 

 
(7.22) 

 

• The zeros are the locations where H(z) = 0 , i.e., z1 z2 z3 

• The poles are where H(z) → , i.e., z → 0 

• Note that the poles and zeros only determine 

constant; recall the example on page 7-5 

H(z) to within a 
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Relationship Between the z-Domain and the Frequency Domain 

 

• A pole-zero plot displays the pole and zero locations in the z- 

plane 

 

z-Plane 

Im 

z2 

 
 

 

Three poles at z = 0 
 

  
3 

Re 
z1 

 
 

 

 
 
Example: 

 

H(z) 

z3 

 

=  1 + 2z
–1 

+ 2z
–2 

+ z
–3

 

• MATLAB has a function that supports the creation of a pole- 

zero plot given the system function coefficients 

>> zplane([1 2 2 1],1) 

1 

0.8 

0.6 

0.4 

0.2 

0 

−0.2 

−0.4 

−0.6 

−0.8 

−1 

−1 −0.5 0 0.5 1 

Real Part 
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0 

 

0 

= 0 

Relationship Between the z-Domain and the Frequency Domain 

 

The Significance of the Zeros of H(z) 

• The difference equation is the actual time domain means for 

calculating the filter output for a given filter input 

• The difference equation coefficients are the polynomial coef- 

ficients in H(z) 

• For xn = 
n 

we know that 
 

yn = H(z0 )z
n 

, (7.23) 

so in particular if z0 is one of the zeros of H(z), H(z0 ) = 0 

and the output yn = 0 

• If a zero lies on the unit circle then the output will be zero for 

a sinusoidal input of the form 

xn = 
n 

(e
ĵ 0 

)
n
 =  e

ĵ 0 n 
(7.24) 

 

where ̂ 0 is the angle of the zero relative to the real axis, 

which is also the frequency of the corresponding complex 

sinusoid; why? 

yn = H(z)  e
ĵ 0 n   

=  0
 

z = e
ĵ 

0
 

(7.25) 

 

Nulling Filters 

• The special case of zeros on the unit circle allows a filter to 

null/block/annihilate complex sinusoids that enter the filter at 

frequencies corresponding to the angles the zeros make with 

respect to the real axis in the z-plane 
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Relationship Between the z-Domain and the Frequency Domain 

 

• The nulling property extends to real sinusoids since they are 

composed of two complex sinusoids at ̂ 0 , and zeros not on 

the real axis will always occur in conjugate pairs if the filter 

coefficients are real 

• This nulling/annihilating property is useful in rejecting 

unwanted jamming and interference signals in communica- 

tions and radar applications 

Example: H(z) =  1 – 2 cos (̂ 0 )z
–1 

+ z
–2 

, xn = cos (̂ 0n) 

• Factoring H(z) we find that 

H(z) = 1 – 
e

ĵ 0  
z

–1 1 – e
–ĵ 0  

z
–1 

 

 
• Expanding xn 

    
z1 z2 

we see that 

xn = 
1
--e

–ĵ 0 n 
+ 

1
--e

ĵ 0 n 

2 2 

• The nulling action of 

from the filter output 

H(z) at  ̂ 0 will remove the signal 

• We can set up a simple simulation in MATLAB to verify this 

>> n = 0:100; 

>> w0 = pi/4; 

>> x = cos(w0*n); 

>> y = filter([1 -2*cos(w0) 1],1,x); 

>> stem(n,x,'filled') 

>> hold 

Current plot held 

>> stem(n,y,'filled','r') 

>> axis([0 50 -1.1 1.1]); grid 
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Relationship Between the z-Domain and the Frequency Domain 
 
 
 

1 
 

0.8 
 

0.6 
 

0.4 
 

0.2 
 

0 
 

−0.2 
 

−0.4 
 

−0.6 
 

−0.8 
 

−1 

0 5 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

10 15 20 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

25 30 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

35 40 45 50 

Time Index − n 

• Since the input is applied at n = 0 , we see a small transient 

while the filter settles to the final output, which in this case is 

zero 

>> zplane([1 -2*cos(w0) 1],1)% check the pole-zero plot 
 

1 
 

0.8 
 

0.6 

0.4 

0.2 

0 

−0.2 

−0.4 

−0.6 
 

−0.8 
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Real Part 
 

 

ECE 2610 Signals and Systems 7–21 

Input 
(blue) 

Output 

ed) (r 

4 


-- ̂ 

0  = 

2 

4 
̂ 

0  =  

-- 

A
m

p
lit

u
d
e

 o
f 
x
[n

] 
a

n
d

 y
[n

] 

Im
a

g
in

a
ry

 P
a

rt
 



H e 

Relationship Between the z-Domain and the Frequency Domain 
 

Graphical Relation Between z and ̂ 

• When we make the substitution z = 

 
e

ĵ 

 

in H(z) 

 

we know 

that we are evaluating the z-transform on the unit circle and 

thus obtain the frequency response 

• If we plot say H(z) over the entire z-plane we can visualize 

how cutting out the response on just the unit circle, gives us 

the frequency response magnitude 

Example: L = 9 Moving Average Filter (9 taps/8th-order) 

• Here we have 
 

H(z) = 1
-- 

9 – 1 

z
–k   

=
 1

-- 
8

 
(1 – e

–j2k  9
z
–1

)
 

 

 

 

 

 
8 Poles at z = 0 
create the “tree 
trunk” 

9  
k  = 0 

9  
k  = 1 

Im 

 
 
 

 
  ĵ  
  

 

3 
 

2 

 
1 

 

0 

–2 

–1 

z-Plane 0 

Magnitude 
Surface 

 
 
 
 
 
 
 
 

 
1 

2 
–2 

 

 
2 

 

1 

 

0 

–1 
Re 
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Relationship Between the z-Domain and the Frequency Domain 
 

>> zplane([ones(1,9)]/9,1) 

9-Tap Moving Average FIlter 

1 
 

0.8 
 

0.6 
 

0.4 
 

0.2 
 

0 
 

−0.2 
 

−0.4 
 

−0.6 
 

−0.8 
 

−1 

 

 
−1 −0.5 0 0.5 1 

Real Part 

>> w = -pi:(pi/500):pi; 

>> H = freqz([ones(1,9)/9],1,w); 
 

1 
 

 

0.5 
 

 

0 
−3 −2 −1 0 1 2 3 

 
 

 
2 

 

0 

 

−2 
 

−3 −2 −1 0 1 2 3 

hat() 
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Useful Filters 

 

Useful Filters 

The L-Point Moving Average Filter 

• The L-point moving average (running sum) filter has 

yn = -
1
- 
L – 1 

xn – k (7.26) 

L  
k  = 0 

 

and system function (z-transform of the impulse response) 
 

H(z) = 
 L – 1 

z
–k

 
(7.27) 

L  
k  = 0 

 

• The sum in (7.27) can be simplified using the geometric 

series sum formula 

1 L – 1 
–k

 1 1 – z
–L 

1 z
L 

– 1 
H(z) = --  z = --  ---------------- = --  ---------------------------- (7.28) 

L 
k = 0 

L 1 – z
–1 L z

L – 1
(z – 1) 

• Notice that the zeros of 

the equation 

H(z) are determined by the roots of 

z
L 

– 1 = 0  z
L 

= 1 (7.29) 
 

• The roots of this equation can be found by noting that 

e
j2k 

=
 

1 for k any integer, thus the roots of (7.29) (zeros of 

(7.28)) are 

zk = 

 
e

j2k  L
 k

 

 

= 0 1 2  L – 1 

 

(7.30) 
 

• These roots are referred to as the L roots of unity 
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He
ĵ  

1 
  

. . . 

Useful Filters 

• One of the zeros sits at z = 1 , but there is also a pole at 

z = 1 , so there is a pole-zero cancellation, meaning that the 

pole-zero plot of H(z) corresponds to the L-roots of unity, 

less the root at z = 0 

z-Plane 
 

 
 

 

 
 
 

 

 
-
2
---

-- 

L 
 

 

L-1 
 

Pole-zero 
cancellation 
occurs here 

 
 

L = 8 shown 
 

 

• We have seen the frequency response of this filter before 

• The first null occurs at frequency ̂ 0   = 2  L 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

0 -
2
---

-- 

L 

̂ 

-
4
---

--  

L 
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Practical Filter Design 

 

A Complex Bandpass Filter 

see text 
 

A Bandpass Filter with Real Coefficients 

see text 

 

Practical Filter Design 

• Here we will use fdatool from the MATLAB signal pro- 

cessing toolbox to design an FIR filter 

 

Properties of Linear-Phase Filters 

• A class of FIR filters having symmetrical coefficients, i.e., 

bk = bM – k for k = 0 1  M has the property of linear 

phase 

 
The Linear Phase Condition 

• For a filter with symmetrical coefficients we can show that 

H(e
ĵ 

) is of the form 

H(e
ĵ 

)  = R(e
ĵ 

)e
–jM  2 

(7.31) 

where R(e
ĵ 

) is a real function 

• The fact that R(e
ĵ 

) is real means that the phase of H(e
ĵ 

) is 
a linear function of frequency plus the possibility of  

phase jumps whenever R(e
ĵ 

) passes through zero 
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0 1 2 

0 1 2 

z* z 

Properties of Linear-Phase Filters 

Example: H(z) = b0 + b1 z
–1 

+ b z
–2 

+ b z
–3 

+ b z
–4 

• By factoring out z
–2 

we can write 

H(z) = b (z
2 

+ z
–2 

) + b (z
1 

+ z
–1

) + b z
–2

 

• We now move to the frequency response by letting z → e
ĵ

 

H(e
ĵ 

)  =  2b  cos (2̂ ) + 2b  cos (̂ ) + b  e
–ĵ 4  2

 

• Note that here we have M = 4 , so we see that the linear 

phase term is indeed of the form e
–ĵ M  2 and the real func- 

tion R(e
ĵ 

) is of the form 

R(e
ĵ 

)  =  b + 2b  cos (2̂ ) + b  cos (̂ ) 
2 0 1 

Locations of the Zeros of FIR Linear-Phase Systems 

• Further study of 

reveals that 

H(z) for the case of symmetric coefficients 

H(1  z) = z
M

H(z) (7.32) 

• A consequence of this condition is that for H(z) having a 

zero at z0 it will also have a zero at 1  z0 

• Assuming the filter has real coefficients, complex zeros occur 

in conjugate pairs, so the even symmetry condition further 

implies that the zeros occur as quadruplets 


z   z* -
1
--- -

1
--- 


 

 0 0  
 0 0  
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z * 

Properties of Linear-Phase Filters 
 
 
 

 
z-Plane 

 

 
 

 

z0 
 

 
 

 

 
 

* 
0 

 

 

 

Quadruplet Zeros for        
Linear Phase FIlters 

--
1
-- 

0 

 

 

 

 

 

 

 

 
 

--
1
-- 

z0 

 

Example: H(z) = 1 – 2z
–1 

+ 4z
–2 

– 2z
–3 

+ z
–4

 
 

>> zplane([1 -2 4 -2 1],1) 
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SamplerT 

 

                             UNIT-4 
 
 
 
 
 
 

 

 

Sampling and Reconstruction 

 
Digital hardware, including computers, take actions in discrete steps. So they can deal with discrete- 

time signals, but they cannot directly handle the continuous-time signals that are prevalent in the 

physical world. This chapter is about the interface between these two worlds, one continuous, the 

other discrete. A discrete-time signal is constructed by sampling a continuous-time signal, and a 

continuous-time signal is reconstructed by interpolating a discrete-time signal. 

 

 Sampling 

 
A sampler for complex-valued signals is a system 

SamplerT : [Reals → Complex] → [Integers → Complex], (11.1) 

where T is the sampling interval (it has units of seconds/sample). The system is depicted in 

figure 11.1. The sampling frequency or sample rate is fs = 1/T , in units of samples/second (or 

sometimes, Hertz), or ωs = 2π/T , in units radians/second. If y = SamplerT (x) then y is defined by 

∀ n ∈ Integers, y(n) = x(nT ). (11.2) 

 

Sampling a sinusoid 

Let x: Reals → Reals be the sinusoidal signal 

∀ t ∈ Reals, x(t) = cos(2π f t), (11.3) 

 

x: Reals → Complex y: Integers → Complex 
  

 

 
Figure 11.1: Sampler. 
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ƒ 

ƒ 

Basics: Units 

 
Recall that frequency can be given with any of various units. The units of the  f  
in (11.3) and (11.4) are Hertz, or cycles/second. In (11.3), it is sensible to give  

the frequency as ω = 2π f , which has units of radians/second. The constant 2π has 

units of radians/cycle, so the units work out. Moreover, the time argument t has 

units of seconds, so the argument to the cosine function, 2π f t, has units of radians, 

as expected. 

In the discrete time case (11.4), it is sensible to give the frequency as 2π f T , which 

has units of radians/sample. The sampling interval T has units of seconds/sample, 

so again the units work out. Moreover, the integer n has units of samples, so again 

the argument to the cosine function, 2π f nT , has units of radians, as expected. 

In general, when discussing continuous-time signals and their sampled discrete- 

time signals, it is important to be careful and consistent in the units used, or con- 

siderable confusion can result. Many texts talk about normalized frequency when 

discussing discrete-time signals, by which they simply mean frequency in units of 

radians/sample. This is normalized in the sense that it does not depend on the 

sampling interval. 
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where f is the frequency of the sinewave in Hertz. Let y = SamplerT (x). Then 

∀ n ∈ Integers, y(n) = cos(2π f nT ). (11.4) 

Although this looks similar to the continuous-time sinusoid, there is a fundamental difference. Be- 

cause the index n is discrete, it turns out that the frequency  f  is indistinguishable from frequency 

f + fs when looking at the discrete-time signal. This phenomenon is called aliasing. 

 
Aliasing 

 
Consider another sinusoidal signal u given by 

∀ t ∈ Reals, u(t) = cos(2π( f + N fs)t), 

where N is some integer and fs = 1/T . If N = 0, then this signal is clearly different from x in (11.3). 

Let 

Then for all n ∈ Integers, 

w = SamplerT (u). 

w(n) = cos(2π( f + N fs)nT ) = cos(2π f nT + 2πNn) = cos(2π f nT ) = y(n), 

because Nn is an integer. Thus, even though u = x, SamplerT (u) = SamplerT (x). Thus, after being 

sampled, the signals x and u are indistinguishable. This phenomenon is called aliasing, presumably 

because it implies that any discrete-time sinusoidal signal has many continuous-time identities (its 
“identity” is presumably its frequency). 



− 
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Example 11.1: A typical sample rate for voice signals is fs = 8000 samples/second, 

so the sampling interval is T = 0.125 msec/sample. A continuous-time sinusoid with 

frequency 440 Hz, when sampled at this rate, is indistinguishable from a continuous- 

time sinusoid with frequency 8,440 Hz, when sampled at this same rate. 

 

Example 11.2: Compact discs are created by sampling audio signals at fs = 44, 100 

Hz, so the sampling interval is about T = 22.7 µsec/sample. A continuous-time si- 

nusoid with frequency 440 Hz, when sampled at this rate, is indistinguishable from a 

continuous-time sinusoid with frequency 44,540 Hz, when sampled at this same rate. 

 

The frequency domain analysis of the previous chapters relied heavily on complex exponential 

signals. Recall that a cosine can be given as a sum of two complex exponentials, using Euler’s 

relation, 

cos(2π f t) = 0.5(ei2π f t + e−i2π f t ). 

One of the complex exponentials is at frequency f , an the other is at frequency f . Complex 

exponential exhibit the same aliasing behavior that we have illustrated for sinusoids. 

Let x: Reals → Complex be 

∀ t ∈ Reals, x(t) = e i2π f t 

where f is the frequency in Hertz. Let y = SamplerT (x). Then for all n in Integers, 

y(n) = ei2π f nT 

 
Consider another complex exponential signal u, 

 

u(t) = ei2π( f +N fs)t 

 

where N is some integer. Let 

 

Then for all n ∈ Integers, 

 
w = SamplerT (u). 

 

w(n) = ei2π( f +N fs)nT = ei2π f nT ei2πN fsnT = ei2π f nT = y(n), 

 

because ei2πN fsnT = 1. Thus, as with sinusoids, when we sample a complex exponential signal with 

frequency f at sample rate fs, it is indistinguishable from one at frequency f + fs (or f + N fs for 

any integer N). 

There is considerably more to this story. Mathematically, aliasing relates to the periodicity of the 

frequency domain representation (the DTFT) of a discrete-time signal. We will also see that the ef- 

fects of aliasing on real-valued signals (like the cosine, but unlike the complex exponential) depend 

strongly on the conjugate symmetry of the DTFT as well. 
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8 kHz 

 
 

 
4 kHz 

 
 
 

 
4 kHz 8 kHz 

Frequency of the continuous-time sinusoid 

sweep 

 

Figure 11.2: As the frequency of a continuous signal increases beyond the 

Nyquist frequency, the perceived pitch starts to drop. 

 

 
Perceived pitch experiment 

 
Consider the following experiment.1 Generate a discrete-time audio signal with an 8,000 sam- 

ples/second sample rate according to the formula (11.4). Let the frequency f begin at 0 Hz and 

sweep upwards through 4 kHz to (at least) 8 kHz. Use the audio output of a computer to listen to 

the resulting sound. The result is illustrated in figure 11.2. As the frequency of the continuous-time 

sinusoid rises, so does the perceived pitch, until the frequency reaches 4 kHz. At that point, the 

perceived pitch begins to fall rather than rise, even as the frequency of the continuous-time sinusoid 

continues to rise. It will fall until the frequency reaches 8 kHz, at which point no sound is heard at 

all (the perceived pitch is 0 Hz). Then the perceived pitch begins to rise again. 

That the perceived pitch rises from 0 after the frequency f rises above 8000 Hz is not surprising. We 

have already determined that in a discrete-time signal, a frequency of f is indistinguishable from a 

frequency f + 8000, assuming the sample rate is 8,000 samples/second. But why does the perceived 

pitch drop when f rises above 4 kHz? 

The frequency 4 kHz,  fs/2, is called the Nyquist frequency, after Harry Nyquist, an engineer at 

Bell Labs who, in the 1920s and 1930s, laid much of the groundwork for digital transmission of 

information. The Nyquist frequency turns out to be a key threshold in the relationship between 

discrete-time and continuous-time signals, more important even than the sampling frequency. In- 

tuitively, this is because if we sample a sinusoid with a frequency below the Nyquist frequency 

(below half the sampling frequency), then we take at least two samples per cycle of the sinusoid. It 

should be intuitively appealing that taking at least two samples per cycle of a sinusoid has some key 
 

1This experiment can be performed at http://www.eecs.berkeley.edu/ẽal/eecs20/week13/aliasing.html. Similar exper- 

iments are carried out in lab C.11. 
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Figure 11.3: A sinusoid at 7.56 kHz and samples taken at 8 kHz. 

 
 
 

significance. The two sample minimum allows the samples to capture the oscillatory nature of the 

sinusoid. Fewer than two samples would not do this. However, what happens when fewer than two 

samples are taken per cycle is not necessarily intuitive. It turns out that the sinusoid masquerades 

as one of another frequency. 

Consider the situation when the frequency f of a continuous-time sinusoid is 7,560 Hz. Figure 11.3 

shows 4.5 msec of the continuous-time waveform, together with samples taken at 8 kHz. Notice 

that the samples trace out another sinusoid. We can determine the frequency of that sinusoid with 

the help of figure 11.2, which suggests that the perceived pitch will be 8000 7560 = 440 Hz (the 

slope of the perceived pitch line is  1 in this region). Indeed, if we listen to the sampled sinusoid, 

it will be an A-440. 

Recall that a cosine can be given as a sum of complex exponentials with frequencies that are nega- 

tives of one another. Recall further that a complex exponential with frequency f is indistinguishable 

from one with frequency f + N fs, for any integer N. A variant of figure 11.2 that leverages this rep- 

resentation is given in figure 11.4. 

In figure 11.4, as we sweep the frequency of the continuous-time signal from 0 to 8 kHz, we move 

from left to right in the figure. The sinusoid consists not only of the rising frequency shown by the 

dotted line in figure 11.2, but also of a corresponding falling (negative) frequency as shown in figure 



− 

 

378 CHAPTER 11. SAMPLING AND RECONSTRUCTION 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
8 

 
 

 
4 

 
 
 
 
 

 

-4 

 
 

sweep 

 

Figure 11.4: As the frequency of a continuous signal increases beyond the 

Nyquist frequency, the perceived pitch starts to drop because the frequency 

of the reconstructed continuous-time audio signal stays in the range    fs/2 

to  fs/2. 
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11.4. Moreover, these two frequencies are indistinguishable, after sampling, from frequencies that 

are 8 kHz higher or lower, also shown by dotted lines in figure 11.4. 

When the discrete-time signal is converted to a continuous-time audio signal, the hardware perform- 

ing this conversion can choose any matching pair of positive and negative frequencies. By far the 

most common choice is to select the matching pair with lowest frequency, shown in figure 11.4 by 

the solid lines behind dotted lines. These result in a sinusoid with frequency between 0 and the 

Nyquist frequency,  fs/2. This is why the perceived pitch falls after sweeping past  fs/2 = 4 kHz. 

Recall that the frequency-domain representation (i.e. the DTFT) of a discrete-time signal is periodic 

with period 2π radians/sample. That is, if X is a DTFT, then 

∀ ω ∈ Reals, X (ω) = X (ω + 2π). 

In radians per second, it is periodic with period 2π fs. In Hertz, it is periodic with period fs, the 

sampling frequency. Thus, in figure 11.4, the dotted lines represent this periodicity. This periodicity 

is another way of stating that frequencies separated by fs are indistinguishable. 

 
Avoiding aliasing ambiguities 

 
Figure 11.4 suggests that even though a discrete-time signal has ambiguous frequency content, it is 

possible to construct a uniquely defined continuous-time signal from the discrete-time waveform by 

choosing the one unique frequency for each component that is closest to zero. This will always result 

in a reconstructed signal that contains only frequencies between zero and the Nyquist frequency. 

Correspondingly, this suggests that when sampling a continuous-time signal, if that signal contains 

only frequencies below the Nyquist frequency, then this reconstruction strategy will perfectly re- 

cover the signal. This is an intuitive statement of the Nyquist-Shannon sampling theorem. 

If a continuous-time signal contains only frequencies below the Nyquist frequency  fs/2, then it can 

be perfectly reconstructed from samples taken at sampling frequency fs. This suggests that prior to 

sampling, it is reasonable to filter a signal to remove components with frequencies above  fs/2.  A 

filter that realizes this is called an anti-aliasing filter. 

 
Example 11.3: In the telephone network, speech is sampled at 8000 samples per 

second before being digitized. Prior to this sampling, the speech signal is lowpass 

filtered to remove frequency components above 4000 Hz. This lowpass filtered speech 

can then be perfectly reconstructed at the far end of the telephone connection, which 

receives a stream of samples at 8000 sample per second. 

 
Before probing this further, let us examine in more detail what we mean by reconstruction. 

 

Reconstruction 

 
Consider a system that constructs a continuous-time signal x from a discrete-time signal y, 

DiscToContT : DiscSignals → ContSignals. 



Probing further: Anti-Aliasing for Fonts 

 
When rendering characters on a computer screen, it is common to use anti-aliasing 

to make the characters look better. Consider the two figures below: 

 

 

 

 

 

 

 

 

 

 
At the left is an image of the Greek letter omega. At the right is the result of 

sampling that rendition by taking only one pixel out of every 100 pixels in the 

original (every 10-th pixel horizontally and vertically), and then rescaling the image 

so it has the same size as the one on the left. The original image is discrete, and the 

resulting image is a smaller discrete image (this process is known as subsampling). 

Rendered with normal-sized pixels the character on the right looks like this: 
 

 
 

 
 

To the discerning eye, this can be improved considerably. The problem is that the 

character at the upper left above has hard edges, and hence high (spatial) frequen- 

cies. Those high frequencies result in aliasing distortion when subsampling. To 

improve the result, we first lowpass filter the character (blurring it), and then sub- 

sample, as shown below: 

 

 

 
The result looks better to the discerning eye: 
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y: Integers → Complex x: Reals → Complex 
  

 

Figure 11.5: Discrete to continuous converter. 

 

 
This is illustrated in figure 11.5. Systems that carry out such ‘discrete-to-continuous’ conversion 

can be realized in any number of ways. Some common examples are illustrated in figure 11.6, and 

defined below: 

 
zero-order hold: This means simply that the value of the each sample y(n) is held constant 

for duration T , so that x(t) = y(n) for the time interval from t = nT to t = (n + 1)T , as 

illustrated in figure 11.6(b). Let this system be denoted 

ZeroOrderHoldT : DiscSignals → ContSignals. 

 
 

linear interpolation: Intuitively, this means simply that we connect the dots with straight 

lines. Specifically, in the time interval from t = nT to t = (n + 1)T , x(t) has values that vary 

along a straight line from y(n) to y(n + 1), as illustrated in figure 11.6(c). Linear interpolation 

is sometimes called first-order hold. Let this system be denoted 

LinearInterpolatorT : DiscSignals → ContSignals. 

 
 

ideal interpolation: It is not yet clear what this should mean, but intuitively, it should result 

in a smooth curve that passes through the samples, as illustrated in figure 11.6(d). We will 

give a precise meaning below. Let this system be denoted 

IdealInterpolatorT : DiscSignals → ContSignals. 

 

 
A model for reconstruction 

 
A convenient mathematical model for reconstruction divides the reconstruction process into a cas- 

cade of two systems, as shown in figure 11.7. Thus 

x = S(ImpulseGenT (y)), 

where S is an LTI system to be determined. The first of these two subsystems, 

ImpulseGenT : DiscSignals → ContSignals, 

• 

• 

• 



DiscToContT 

 

382 CHAPTER 11. SAMPLING AND RECONSTRUCTION 
 

 

y(n) 

 

(a) 

 
x(t) 

 
(b) 

 
x(t) 

 
(c)  

 
x(t) 

 
(d)  

 

w(t) 

 

(e)  
 
 

Figure 11.6: A discrete-time signal (a), a continuous-time reconstruction 

using zero-order hold (b),  a reconstruction using linear interpolation (c),  

a reconstruction using ideal interpolation (d), and a reconstruction using 

weighted Dirac delta functions (e). 
 
 
 

 
y: Integers → Complex 

w: Reals → Complex  
x: Reals → Complex 

  

 

 

y: Integers → Complex x: Reals → Complex 
  

 
 

Figure 11.7: A model for reconstruction divides it into two stages. 
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Figure 11.8: The impulse responses for the LTI system S in figure 11.7 that 

yield the interpolation methods in figure 11.6(b-e). 

 
 

constructs a continuous-time signal, where for all t ∈ Reals, 

∞ 

w(t) = ∑ 
k=−∞ 

y(k)δ(t − kT ). 

This is a continuous-time signal that at each sampling instant kT produces a Dirac delta function 

with weight equal to the sample value, y(k). This signal is illustrated in figure 11.6(e). It is a 

mathematical abstraction, since everyday engineering systems do not exhibit the singularity-like 

behavior of the Dirac delta function. Nonetheless, it is a useful mathematical abstraction. 

The second system in figure 11.7, S, is a continuous-time LTI filter with an impulse response that 

determines the interpolation method. The impulse responses that yield the interpolation methods in 

figure 11.6(b-e) are shown in figure 11.8(b-e). If 

t Reals h(t) = 
1 0 t < T

 
0 otherwise 

then the interpolation method is zero-order hold. If 
 

∀ t ∈ Reals, h(t) = 
 

1 t/T 0 t < T 
 

0 otherwise 
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If x is a continuous-time signal with Fourier transform X and if X (ω) is zero outside 

the range −π/T < ω < π/T radians/second, then 

x = IdealInterpolatorT (SamplerT (x)). 
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then the interpolation method is linear. If the impulse response is 

sin(πt/T ) 

∀ t ∈ Reals, h(t) = 
 

 

πt/T 
 

then the interpolation method is ideal. The above impulse response is called a sinc function, and its 

Fourier transform, from table 10.4, is given by 

ω Reals X (ω) = 
T if  ω π/T

 
0 otherwise 

 

Notice that the Fourier transform is zero at all frequencies above π/T  radians/second, or  fs/2 Hz, 

the Nyquist frequency. It is this characteristic that makes it ideal. It precisely performs the strategy 

illustrated in figure 11.4, where among all indistinguishable frequencies we select the ones between 

− fs/2 and  fs/2. 

If we let SincT denote the LTI system S when the impulse response is a sinc function, then 

IdealInterpolatorT = SincT ◦ ImpulseGenT . 

In practice, ideal interpolation is difficult to accomplish. From the expression for the sinc function 

we can understand why. First, this impulse response is not causal. Second, it is infinite in extent. 

More importantly, its magnitude decreases rather slowly as t increases or decreases (proportional to 

1/t only). Thus, truncating it at finite length leads to substantial errors. 

If the impulse response of S is 

h(t) = δ(t), 

where δ is the Dirac delta function, then the system S is a pass-through system, and the reconstruc- 

tion consists of weighted delta functions. 

 
 

The Nyquist-Shannon sampling theorem 

 
We can now give a precise statement of the Nyquist-Shannon sampling theorem: 

 
 

 

We can state this theorem slightly differently. Suppose x is a continuous-time signal with no fre- 

quency larger than some  f0  Hertz.   Then x can be recovered from its samples if  f0 <  fs/2,  the 

Nyquist frequency. 



This relates the CTFT X of the signal being sampled x to the DTFT Y of the 

discrete-time result y. 

. 

Σ 

T 

2πk −  ω  
. 

X ∑ 
k=−∞ 

T 

∞ 

Y (ω) = 
1
 

where the last equality follows from the sifting property (9.11). The next step is to 

show that 

Y (ω) = W (ω/T ). 

We leave this as an exercise. From this, the basic Nyquist-Shannon result follows, 

2π 
∑ X (ω − k 

T 
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δ(ω − , 

∞ 

∑ 
k=−∞ 

T 
P(ω) = 

2π
 

It can be shown (see box on page 386 that the CTFT of p(t) is 

−∞ 

X (Ω)P(ω − Ω)dΩ. 

∞ 

Z  1  

2π 2π 

 1  
W (ω) = X (ω) ∗ P(ω) = 

k=−∞ 

Consider a continuous-time signal x that we wish to sample with sampling period 

T . That is, we define y(n) = x(nT ). Construct first an intermediate continuous-time 

signal w(t) = x(t)p(t). We can show that the CTFT of w is equal to the DTFT of y. 

This gives us a way to relate the CTFT of x to the DTFT of its samples y. Recall that 

multiplication in the time domain results in convolution in the frequency domain 

(see table 10.9), so 

∞ 

p(t) = ∑ δ(t − kT ). ∀ t ∈ Reals, 

Probing further: Sampling 

 
We can construct a mathematical model for sampling by using Dirac delta func- 

tions. Define a pulse stream by 

 

 THE NYQUIST-SHANNON SAMPLING THEOREM 385 
 
 



− 

− 

∞ 

T 

∞ . Σ 

 

386 CHAPTER 11. SAMPLING AND RECONSTRUCTION 
 

 

 

 

 

 

 

 

 
 

Probing further: Impulse Trains 

 
Consider a signal p consisting of periodically repeated Dirac delta functions with 

period T , 

∀ t ∈ Reals, p(t) = 

This signal has the Fourier series expansion 

∞ 

∑ 
k=−∞ 

δ(t − kT ). 

 

1 iω mt 

∀ t ∈ Reals, p(t) = ∑ e 0 , 
m=−∞ 

where the fundamental frequency is ω0 = 2π/T . This can be verified by applying 

the formula from table 10.5. That formula, however,  gives an integration range  

of 0 to the period, which in this case is T . This integral covers one period of the 

periodic signal, but starts and ends on a delta function in p. To avoid the resultant 

mathematical subtleties, we can integrate from T/2 to T/2, getting Fourier series 

coefficients 

1   
T/2 Σ  

∞ 
Σ 

∀ m ∈ Integers, Pm = 
T

 
Z 

−T/2 

∑ 
k=−∞ 

δ(t − kT ) eiω0mtdt. 

The integral is now over a range that includes only one of the delta functions. 

The kernel of the integral is zero except when t = 0, so by the sifting rule, the 

integral evaluates to 1. Thus, all Fourier series coefficients are Pm = 1/T . Using 

the relationship between the Fourier series and the Fourier Transform of a periodic 

signal (from section 10.6.3), we can write the continuous-time Fourier transform of 

p as 

∀ ω ∈ Reals, P(ω) = 
2π 

∑ δ
 

T k=−∞ 

ω 
2π 

k . 
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Figure 11.9: Steps in the justification of the Nyquist-Shannon sampling the- 

orem. 
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Figure 11.10: Relationship between the CTFT of a continuous-time signal 

and the DTFT of its discrete-time samples. The DTFT is the sum of the 

CTFT and its copies shifted by multiples of 2π/T , the sampling frequency in 

radians per second. The frequency axis is also normalized. 

 
 

A formal proof of this theorem involves some technical difficulties (it was first given by Claude 

Shannon of Bell Labs in the late 1940s). But we can get the idea from the following three-step 

argument (see figure 11.9). 

Step 1. Let x be a continuous-time signal with Fourier transform X . At this point we do not require 

that X (ω) be zero outside the range π/T < ω < π/T . We sample x with sampling interval T to 

get the discrete-time signal 

y = SamplerT (x). 

It can be shown (see box on page 385 ) that the DTFT of y is related to the CTFT of x by 
 

This important relation says that the DTFT Y of y is the sum of the CTFT X with copies of it shifted 

by multiples of 2π/T . Also, the frequency axis is normalized by dividing ω by T . There are two 

cases to consider, depending on whether the shifted copies overlap. 

First, if X (ω) = 0 outside the range −π/T < ω < π/T , then the copies will not overlap, and in the 

range −π < ω < π, 

Y (ω) = 
1 

X 
. ω Σ 

. (11.5) 

In this range of frequencies, Y has the same shape as X , scaled by 1/T . This relationship between 

X and Y is illustrated in figure 11.10, where X is drawn with a triangular shape. 

In the second case, illustrated in figure 11.11, X does have non-zero frequency components higher 

than π/T . Notice that in the sampled signal, the frequencies in the vicinity of π are distorted by the 

overlapping of frequency components above and below π/T in the original signal. This distortion 

is called aliasing distortion. 
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Figure 11.11: Relationship between the CTFT of a continuous-time signal 

and the DTFT of its discrete-time samples when the continuous-time signal 

has a broad enough bandwidth to introduce aliasing distortion. 

 
 

We continue with the remaining steps, following the signals in figure 11.9. 

Step 2. Let w be the signal produced by the impulse generator, 

∞ 

∀ t ∈ Reals, w(t) = ∑ 
n=−∞ 

y(n)δ(t − nT ). 

The Fourier Transform of w is W (ω) = Y (ωT ) (see box on page 385). 

Step 3. Let z be the output of the IdealInterpolatorT . Its Fourier transform is simply 

Z(ω)   =  W (ω)S(ω) 

=  Y (ωT )S(ω), 

where S(ω) is the frequency response of the reconstruction filter IdealInterpolatorT . As seen in 

exercise 21 of chapter 10, 

 

 
Substituting for S and Y , we get 

S(ω) = 
T π/T < ω < π/T 
0 otherwise 

(11.6) 

 

Z(ω)  = 
TY (ωT ) π/T < ω < π/T 
0 otherwise 

=   

 ∞ 

∑ 
k=−∞ 

X (ω − 2πk/T ) −π/T < ω < π/T 

 
0 otherwise 

If X (ω) is zero for |ω| larger than the Nyquist frequency π/T , then we conclude that 

∀ ω ∈ Reals, Z(ω) = X (ω). 



| | 
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That is, w is identical to x. This proves the Nyquist-Shannon result. 

However, if X (ω) does have non-zero values for some ω larger than the Nyquist frequency, then z 
will be different from x, as illustrated in figure 11.11. 

 
 

Summary 

 
The acts of sampling and reconstructing a continuous-time signal bridge the continuous-time world 

with the discrete computational world. The periodicity of frequencies in the discrete world implies 

that for each discrete-time sinusoidal signal, there are multiple corresponding discrete-time fre- 

quencies. These frequencies are aliases of one another. When a signal is sampled, these frequencies 

become indistinguishable, and aliasing distortion may result. The Nyquist-Shannon sampling theo- 

rem gives a simple condition under which aliasing distortion is avoided. Specifically, if the signal 

contains no sinusoidal components with frequencies higher than half the sampling frequency, then 

there will be no aliasing distortion. Half the sampling frequency is called the Nyquist frequency 

because of this key result. 

 
 

Exercises 

 
Each problem is annotated with the letter E, T, C which stands for exercise, requires some thought, 

requires some conceptualization. Problems labeled E are usually mechanical, those labeled T re- 

quire a plan of attack, those labeled C usually have more than one defensible answer. 

 
1. E Consider the continuous-time signal 

x(t) = cos(10πt) + cos(20πt) + cos(30πt). 

(a) Find the fundamental frequency. Give the units. 

(b) Find the Fourier series coefficients A0, A1, · · · and φ1, φ2, · · ·. 

(c) Let y be the result of sampling this signal with sampling frequency 10 Hz. Find the 

fundamental frequency for y, and give the units. 

(d) For the same y, find the discrete-time Fourier series coefficients, A0, A1, · · · and φ1, · · ·. 

(e) Find 

 
for T = 0.1 seconds. 

w = IdealInterpolatorT (SamplerT (x)) 

(f) Is there any aliasing distortion caused by sampling at 10 Hz? If there is, describe the 

aliasing distortion in words. 

(g) Give the smallest sampling frequency that avoids aliasing distortion. 

2. E Verify that SamplerT defined by (11.1) and (11.2) is linear but not time invariant. 
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3. E A real-valued sinusoidal signal with a negative frequency is always exactly equal to another 

sinusoid with positive frequency. Consider a real-valued sinusoid with a negative frequency 

−440 Hz, 

y(n) = cos(−2π440nT + φ). 

Find a positive frequency f and phase θ such that 

y(n) = cos(2π f nT + θ). 

 

4. T Consider a continuous-time signal x where for all t ∈ Reals, 

∞ 

 

 
where 

x(t) = ∑ 
k=−∞ 

r(t − k). 

r(t) = 
1 0 t < 0.5 

0 otherwise 

(a) Is x(t) periodic? If so, what is the period? 

(b) Suppose that T = 1. Give a simple expression for y = SamplerT (x). 

(c) Suppose that T = 0.5. Give a simple expression for y = SamplerT (x) and z = IdealInterpolatorT (SamplerT (x) 

(d) Find an upper bound for T (in seconds) such that x = IdealInterpolatorT (SamplerT (x)), 
or argue that no value of T makes this assertion true. 

5. T Consider a continuous-time signal x with the following finite Fourier series expansion, 

4 

t Reals, x(t) = ∑ cos(kω0t) 
k=0 

where ω0 = π/4 radians/second. 

(a) Give an upper bound on T (in seconds) such that x = IdealInterpolatorT (SamplerT (x)). 

(b) Suppose that T = 4 seconds. Give a simple expression for y = SamplerT (x). 

(c) For the same T = 4 seconds, give a simple expression for 

w = IdealInterpolatorT (SamplerT (x)). 

6. T Consider a continuous-time audio signal x with CTFT shown in figure 11.12. Note that it 

contains no frequencies beyond 10 kHz. Suppose it is sampled at 40 kHz to yield a signal that 

we will call x40. Let X40 be the DTFT of x40. 

(a) Sketch |X40(ω)| and carefully mark the magnitudes and frequencies. 

(b) Suppose x is sampled at 20,000 samples/second. Let x20 be the resulting sampled signal 

and X20 its DTFT. Sketch and compare x20 and x40. 

(c) Now suppose x is sampled at 15,000 samples/second. Let x15 be the resulting sampled 

signal and X15 its DTFT. Sketch and compare X20 and X15. Make sure that your sketch 

shows aliasing distortion. 



 

392 CHAPTER 11. SAMPLING AND RECONSTRUCTION 

 

H(2 f) 
 

f (kHz) 

 

 

 

Figure 11.12: CTFT of an audio signal considered in exercise 6. 

 
 

7. C Consider two continuous-time sinusoidal signals given by 

x1(t) = cos(ω1t) 

x2(t) = cos(ω2t), 

with frequencies ω1 and ω2 radians/second such that 

0 ≤ ω1 ≤ π/T and 0 ≤ ω2 ≤ π/T. 

Show that if ω1 ƒ= ω2 then 

SamplerT (x1) ƒ= SamplerT (x2). 

I.e., the two distinct sinusoids cannot be aliases of one another if they both have frequencies 

below the Nyquist frequency. Hint: Try evaluating the sampled signals at n = 1. 

1 
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